La Supersymétrie

• Brève introduction

- Le secteur de Higgs en supersymétrie
- Recherche directe de super partenaires
- Vers la détermination des paramètres du Modèle

Brève Introduction

- Supersymetrie: symétrie reliant fermions <-> bosons
- Brisée dans la nature
- La supersymetrie existe-t-elle à « basse »énergie (<< MPlanck) ?
 - Résout problème d'ajustement fin de la masse du Higgs dans le Modèle Standard
 - Permet meilleure unification des couplages
 - Candidat naturel à la matière noire non-baryonique (existence confortée par derniers résultats en cosmologie)

(voir cours de J.Ellis)

MSSM = extension minimale en particules du Modèle Standard Pour chaque particule -> superpartenaire

R parité = +1 pour particules standards, -1 pour superpartenaires = (-1) ^{3(B-L)+2S} Conservée dans les Modèles les plus populaires

~100 paramètres pour décrire de manière complètement générale toutes les masses

Brisure de supersymetrie (secteur caché) : Plusieurs possibilités Plus populaire:

mSUGRA: brisure de SUSY transmise par gravite à haute énergie Paramètres:

- m0 = masse commune des scalaires à l'échelle GUT
- m1/2 = masse commune des gauginos à l'échelle GUT
- μ = terme de masse supersymetrique Higgs
- A = couplage trilineaire Higgs-sparticule
- ⇒Évolution par les équations du groupe de renormalisation pour obtenir les masses à basse énergie

Le neutralino le plus léger est la particule supersymetrique la plus légère (LSP

Alternative:

GMSB: Brisure à échelle plus faible transmise par interactions de jauge Le gravitino est la particule supersymetrique la plus légere

Autre possibilité: non conservation de R- parité

Spectre «typique » en masse des superpartenaires dans mSUGRA:

 χ^{0}_{1} < sleptons_R sleptons_L~ χ^{0}_{2} < stop1 <<squarks gluinos

Secteur de Higgs du MSSM

- 2 doublets
 - nécessaire pour donner des masses aux quarks up et down
 - pas d'anomalie
- Après brisure de la symétrie EW, 5 (=8-3) degrés de liberté restent massifs:

h,H (CP +) A (CP -) ,H⁺,H⁻

Relation entre potentiel de Higgs et couplage de jauge

 $m_h^2 \sim g^2 v^2$ (=> Higgs léger)

Contribution au potentiel de Higgs:

- Termes de jauge
- Terme µ

• Terme de brisure douce de Susy

$$\begin{split} V_{\text{Higgs}} &= \\ \frac{1}{8} (g^2 + g^{\prime 2}) (H_1^{\dagger} H_1 - H_2^{\dagger} H_2)^2 \\ &+ \frac{1}{2} g^2 H_1^{\dagger} H_2 H_2^{\dagger} H_1 \\ &+ (m_1^2 + |\mu|^2) H_1^{\dagger} H_1 + (m_2^2 + |\mu|^2) H_2^{\dagger} H_2 \\ &- m_{12}^2 \epsilon_{ij} (H_1^{i} H_2^{j} + H_1^{*i} H_2^{*j}) \end{split}$$

Valeurs moyennes dans le vide:

 $V^2 = V_1^2 + V_2^2$ (v=246 GeV)

$$H_{1} = \begin{pmatrix} v_{1} \\ 0 \end{pmatrix}$$
$$H_{2} = \begin{pmatrix} 0 \\ v_{2} \end{pmatrix}$$

 $v_1 =>$ masse aux fermions i3=-1/2, $v_2 =>$ masse aux fermions i3=+1/2 tan(β) = v_2/v_1

Translation à <H> vide + diagonalisation matrice de masse:

$$M_{A}^{2} = m_{1}^{2} + |\mu|^{2}$$

$$M_{H^{\pm}}^{2} = M_{A}^{2} + M_{W}^{2}$$

$$M_{H,h}^{2} = \frac{1}{2} \left[M_{A}^{2} + M_{Z}^{2} \pm \sqrt{\left(M_{A}^{2} + M_{Z}^{2}\right)^{2} - 4M_{A}^{2}M_{Z}^{2}\cos(2\beta)} \right]$$

Mélange entre composantes CP+ de H₁,H₂ pour donner h,H : α $\cos^{2}(\beta - \alpha) = \frac{M_{h}^{2}(M_{Z}^{2} - M_{h}^{2})}{M_{A}^{2}(M_{H}^{2} - M_{h}^{2})}$

Ordre de Born: 2 paramètres M_A , tan(β) Autres masses + couplages fixés par ces paramètres

```
Couplages (pour h,H) :

hVV = MS * sin(\beta-\alpha)

HVV = MS * cos(\beta-\alpha)

hbb = MS * -sin(\alpha)/cos(\beta)

Hbb = MS * cos(\alpha)/cos(\beta)

htt = MS * cos(\alpha)/sin(\beta)

Htt = MS * sin(\alpha)/sin(\beta)
```

```
H+-
```

Ne couple pas à W⁺⁻Z H⁺tb ~ $m_b tan(\beta)+m_t cotan(\beta)$

```
Α
```

Ne couple pas à WW,ZZ Att ~ $m_t \operatorname{cotan}(\beta)$ Abb ~ $m_b \operatorname{tan}(\beta)$

Prédiction: $M_h < M_Z$ (à l'ordre de Born) Limite importante M_A grand: h devient ~ higgs du Modèle Standard ($\cos(\beta-\alpha) \sim 0$) Les corrections radiatives sont importantes ! Par exemple pour la masse du h

Augmentation significative de la limite supérieure de la masse du h (=> peut échapper la détection à LEP) ⇒Dépendance avec autres paramètres du Modèle supersymetrique: échelle de Susy, paramètre de mélange dans le secteur Stop (mélange=>différence de masse stop1,stop2 =>moins bonne compensation des divergences,...)

Dans la suite, considère quelques scenarii typiques pour ces paramètres (dans le cadre de MSSM inspire par mSUGRA) •Pas de mélange stop, Msusy=1TeV

•mh-max: plus grande valeur possible de mh pour M_A,tan(β) donnés
 •Gluophobique: réduit le couplage effectif hgg par compensation entre boucles de top et stop

•Petit α : réduit le couplage hbb par une correction de boucle b-gluino *(Carena et al, hep-ph/0202167)*

Largeurs totales:

Stratégies pour recherche Higgs MSMM

- Pas de désintégration en super-partenaires:
 - Application des recherches du Higgs du Modèle Standard:
 - section efficaces = MS * facteur (M_A ,tan β)
 - rapport de branchement = $f(M_A, tan\beta)$
 - Nouveaux canaux:
 - H,A -> ττ,µµ (grands tan(β)) : la section efficace devient dominée par la production bbH,bbA ~tan²(β)
 - H⁺⁻ 2 possibilités:
 - masse < m_{top} => produit dans désintégration t -> b H+
 - masse >= m_{top}
- Désintégration en super-partenaires

Applications recherches Higgs standard

- $\sigma(gg) = s_{SM} * \Gamma(h(H,A)->gg)/\Gamma(H_{SM}->gg)$
- $\sigma(VBF,h) = \sin^2(\alpha \beta) * \sigma_{SM}$
- etc...
- Canaux les plus prometteurs: h (à grands M_A), H (à petits M_A) -> modes standards pour higgs léger (<140-150 GeV)
 - VBF h,H -> τ τ
 - VBF h,H -> WW*
 - h,H -> γ γ
 - h,H -> 4 leptons (pour mh-max)
 - t tbar h,H h,H->b bbar

avec 30 fb⁻¹ (Atlas) Canal exigeant: jets étiqueteurs, résolution en ptmiss, identification des τ

- Section efficaces bbA,bbH ~ tan²(β) (+production directe avec boucle de b)
- Désintégration τ-τ devient observable (BR ~10% sauf pour grand MA, petits tan(b) ou A,H -> t tbar devient dominant)
- Signal $\tau \tau$ -> dilepton ou lepton+hadron ou hadron+hadron:
 - mesure de $M(\tau-\tau)$ avec approximation colinéaire pour les neutrinos ~ résolution en impulsion transverse manquante si Pt(A,H) >0
 - (=> coupure sur $\Delta \phi$ entre les deux taus, différentes résolutions pour les 2 mécanismes de production)
 - Identification des désintégration hadroniques des τ
 - Canal lepton+hadron est en général le meilleur
- On peut chercher à identifier les jets de b produit en association
 -> algorithmes dédies pour identifier des b de faible impulsion
 - => algorithmes dédies pour identifier des b de ~faible impulsion transverse (~< 50 GeV) sur une grande gamma de pseudorapidité</p>
- Bruits de fond:
 - **Ζ/** γ^* -> $\tau \tau$ (irréductible)
 - **ttbar**, **W** + **jet(s)**: W->lepton jet-> faux τ (pour canal lepton+hadron)
 - Jets QCD pour canal hadron+hadron
- Résolutions sur la masse + identification des τ dépendent de la luminosité (effets empilements)

Exemple analyse Atlas du TDR (tan β =10):

- étape 1: événement avec 1 lepton (pt>25 GeV) et 1 jet identifié comme τ (pt>40 GeV)
- étape 2: pt(miss)>20 GeV, et reconstruction de masse
- étape 3: séparation production directe (boucle) et production associée (bbbar)
 - directe: veto jets de b pt>15 GeV, coupure $\Delta\phi$ (lepton-jet)
 - associe: au moins 1 jet de b, pas plus de deux jets non-b

m _A (GeV)	150	300	450
$ \begin{array}{l} \sigma \times \text{BR for direct production (pb)} \\ \sigma \times \text{BR for associated production (pb)} \end{array} $	1.3 2.9	0.05 0.28	0.015 0.04
Mass window (GeV)	$\pm 30 { m GeV}$	$\pm 55~{ m GeV}$	$\pm 75~{ m GeV}$
Inclusive analysis			
Signal significance for 30 fb-1	5.7	1.2	0.6
Direct/associated analysis			
Event rates:			
Direct production Associated production Total signal	49 / 2 56 / 72 105 / 74	9.5 / 0.35 6 / 18 15.5. / 18	1.5 / 0.16 1.3 / 6.3 2.8 / 6.5
W+jet $t\bar{t}$ $b\bar{b}$ $Z/\gamma^* \rightarrow \tau\tau$ Total background	530 / 46 7 / 6 14 / 29 163 / 5 714 / 86	740 / 43 9 /8 4 / 21 41 / 2 794 / 74	228 / 22 5 /4 1 / 6 7 / 0.5 241 / 32.5
Signal significance for 30 fb ⁻¹	3.9 / 8.0	0.6 / 2.1	0.2 / 1.1
Combined significance for 30 fb ⁻¹	8.9	2.2	1.2
Combined significance for 300 fb-1	12.5	3.8	2.1

Exemple: A,H -> $\tau \tau$ -> hadron-hadron avec identification b produit en association (mA=500 GeV, tan β =30)

<u>A,H -> μ μ</u>

•Même production que pour $\tau\tau$ •Rapport de branchement plus faible ($\sim m_{\mu}^2/m_{\tau}^2$) => $\sim 0.03 \%$ •Mais bien meilleure efficacité de reconstruction et meilleure résolution

Identification des b du processus bbH,bbA utilisée pour réduire Z/DY
Veto de jet dans la région centrale pour réduire t-tbar

Potentiel de découverte H,A -> $\tau \tau$ (et $\mu \mu$) pour 30 fb⁻¹

H⁺⁻, Masse<Mtop

Désintégration t -> b H⁺ compétitive: Production relativement abondante de H⁺

H⁺ -> c sbar (petits tanβ) H⁺ -> $\tau^+ \nu$ (grands tanβ)

 \Rightarrow Recherche excès d'événements avec τ dans les désintégrations du top

Sélection typique: lepton (e ou μ) + τ (->hadrons) + jets (identification b) Bruit de fond: principalement t-tbar avec faux ou vrais τ S ~ milliers evts pour 30 fb⁻¹ mais S/B < 1 (=> limité par erreur systématique sur B ~3%)

Limité à $M_{H+} \sim 150-160 \text{ GeV}$ Couvre ~ toute les valeurs de tan(β)

H+-, Masse>Mtop

Masse=300 GeV

Mode1: H⁺ -> t bbar

(ou inverse)

- Topologie:
 - t -> bW -> b jj
 - autre tbar -> semileptonique (=> déclenchement)_
 - b de la production associe
 - 1 lepton, énergie transverse manquante, 4 jets de b, 2 autres jets
- Bruit de fond:
 - irréductible t tbar b bbar
 - réductible t tbar jet jet
- But: reconstruire la masse invariante H+ par m(b-bbar-j-j)
- Difficulté: combinatoire
- Identification de 3 ou 4 jets de b (il n'est pas forcement nécessaire de détecter le jet de b produit en association avec H+ tbar)
- Fonction de maximum de vraisemblance utilisant la cinématique pour trouver la meilleure combinaison

Présélection:

Lepton, énergie transverse manquante

- =4 jets de b pt>20 GeV η <2.5
- >= 2 autres jets $pt>20 \eta<5$
- Recherche bonne combinaison:
- -reconstruit m(jj) (doit être égal à mw pour bonne combinaison)
- -estime pz(v) à partir contrainte de mw (W->Iv) (2 solutions a priori)
- -reconstruit m(jjb1) (doit être égal à mtop)
- -reconstruit m(lvb2) (doit être égal à mtop)
- -Utilise pt(b3),pt(b4) pour trouver b de H⁺ (par rapport à b produit en association)
- - $\Delta R(b3,top)$ pour trouver quel top vient du H⁺
- (-> m(jjb1b3) ou m(I_Vb2b3) va donner M_{H+})
- => fonction de vraisemblance
- 4! * C²_m * 2 *2 possibilités en général (au moins 96)

~10-20% des événements ont une association parfaite (partons <-> jets)

Utilise variables discriminantes pour augmenter S/B

Autres masse invariantes + separations angulaires (distingue production du bruit de fond ou une paire b-bbar vient d'un gluon) => Fonction de vraisemblance (dépendant de la masse supposée)

Résultats typiques pour 30 fb⁻¹

Incertitudes systématiques: section efficace signal normalisation du bruit de fond

(permet de couvrir aussi une région à petit $tan(\beta)$)

Mode2: H⁺ -> τv

- Topologie:
 - $-\tau$ -> hadrons
 - tbar -> 3 jets
 - => Etat final τ + impulsion transverse manquante + 3 jets
- Bruit de fond:
 - t tbar
 - W t
- But: reconstruire la masse transverse tau-impulsion manquante (front descendant à M_H)
- Amélioration de S/B en exploitant spin 0 de H⁺

Désintégration τ + -> π + vbar:

Configuration favorisée: Coupure: >80% énergie visible du τ emportée par 1 trace

Permet de couvrir région $tan(\beta) > \sim 20-30$

A grands tan(β), désintégration τv a une sensibilité un peu meilleure que t-bbar

Résumé pour 300 fb-1 (Atlas) pas de superpartenaires

- Avec 300 fb⁻¹, on observe au moins un boson de Higgs (~vrai avec 30 fb⁻¹ par VBF en ττ)
- Cas limites intéressants:
 - Grands M_A : h « quasi standard », observation de H,A,H+ possible à grands tan β
 - M_A intermediaire, tanβ ~5: h (ou H) observable en VBF, taux réduit par rapport à MS, A,H,H+- plus difficiles a voir
 - M_A ~130-150 GeV, grands tan(b) : tous les higgs ont ~la meme masse. On peut les observer (->ττ ou bb). Mais résolution >> différence de masse => difficiles à séparer. Canaux μμ ?
- Précision sur les masses ~0.1 % (h standard) à quelques % (modes en τ). tanβ à ~5-15% par mesure du taux H,A->ττ et/ou H⁺ -> τν (limité par incertitudes systématiques + connaissance section efficace)
- Luminosité SLHC: augmentation par ~50 GeV (en M_A) de la couverture de H,A ?

Observation possible de H⁺ -> $\mu\nu$??

Note: on peut considérer un modèle à 2 doublets en dehors du cadre de SUSY => moins de relation entre les paramètres, plusieurs possibilités différentes

H -> particules supersymetriques

- Si possible cinématiquement, certaines désintégrations sont compétitives par rapport aux modes -> particules standards
 - h -> $\chi^{0}_{1}\chi^{0}_{1}$ (-> invisible !)
 - H/A -> $\chi_{2}^{0}\chi_{2}^{0}$ (puis χ_{2}^{0} -> χ_{1}^{0} I⁺I⁻)
- On peut aussi produire h dans des désintégrations de particules susy plus massives (par exemple χ⁰₂ -> χ⁰₁ h)

<u>h -> invisible</u>

- Mode le plus prometteur: Production VBF de h. Signature:
 - 2 jets avec caractéristiques VBF
 - Grande énergie transverse manquante
 - Pas de lepton, Pas de jet dans la région centrale
- Principale difficulté: Déclenchement (2 jets vers l'avant + énergie transverse manquante) (CMS -> efficacité ~95%)

Bruits de fond: Z+2 jets, W+2 jets, avec Z -> vvW -> lvPeut être normalisé aux modes avec lepton(s) observé(s)

Sensibilité à σ (VBF)*BR(h->invisible)/ σ (VBF MS)

Autre Mode: t-tbar-H suivi de H-> invisible, t-tbar -> lepton+jets La sensibilité semble moins bonne (facteur ~5)

Comment se convaincre qu'on observe un boson de Higgs ? (pas de mesure de la masse)

 $\underline{\mathsf{H}} \rightarrow \chi^0_2 \chi^0_2$

- Rapport de branchement important (~20-30%) prévu pour des tan(β) intermédiaires (~10) dans MSSM
- $\chi_2^0 \rightarrow \chi_1^0 | I^+|^- (\chi_1^0 \rightarrow \text{énergie manquante})$
- Signature propre avec très peu de bruit de fond:
 - 4 leptons
 - impulsion transverse manquante

Sensibilité dans la région
 intermédiaire en M_A et tanβ

hep-ph/0406323

Scénario avec observation de h seul. Les couplages différent-ils du Modèle Standard ?

Ne marche pas à très grands M_A

Scénario plus compliqué pour secteur de Higgs (I):

Violation de CP

Carena, Ellis, Pilaftsis, Wagner, Phys.Lett B495 155(2000))

- Dans Modèle précèdent, pas de violation de CP dans le secteur de Higgs (couplages réels)
- On peut avoir des paramètres complexes qui interviennent dans les boucles:
 - couplages trilineaires At,Ab
 - paramètre de masse du gluino
- Cas extrême: ces 3 paramètres ont des phases de 90 degrés
- Phénoménologie: les 3 bosons de Higgs neutres ne sont plus états propres de CP mais des mélanges entre états propres de CP (H,h,A)
- H1,H2,H3 couplent à W,Z $\Sigma g^2 = g^2(SM)$ Désintégrations H3->H1H1 H2->H1

Désintégrations H3->H1H1, H2->H1H1 possibles

Masse du boson le plus léger H1 (paramètres M_{H+} , tan β)

Application des canaux MSSM + Higgs « standards » :

Scénario plus compliqué pour secteur de Higgs (II): NMSSM

Rajoute un singlet au secteur de Higgs => 7 états physiques h1,h2,h3,a1,a2,h⁺⁻ h_i -> a_j a_j possible

```
(voir Ellwanger et al hep-ph/0305109)

Peut-on échapper à la découverte d'au moins un Higgs avec les

canaux classiques ?

Exemple potentiellement délicat: (à la limite de LEP)

m(h1)=115 \text{ GeV}, m(a1)=56 \text{ GeV},

BR(h1->a1a1) = 98\%

BR(a1->bb) = 92\% BR(a1->\tau\tau)=8\%
```


Difficultés:

Les leptons sont de faible pt Les b sont aussi de relativement petit pt Configuration du type 2 lepton + 2 jets de b + 2 autres de jets Bruit de fond dominant t-tbar + 2 jets Z (-> t t) + 4 jets peut être réduit par identification des b

Études détaillées en cours Note: encore une fois importance de l'identification des b et des τ

Recherche directe de SUSY

- squarks et gluinos sont produits par interactions fortes (production par paires si R parité conservée) => grandes sections efficaces. Particules SUSY les plus abondamment produites au LHC
- Désintégration directe ou en cascades -> particules standards (quarks et gluons) + LSP (R parité conservée)
- Le LSP n'interagit pas dans le détecteur
- => Signature traditionnelle jets + grande énergie transverse manquante

Cadre mSUGRA pour la plupart de ce cours

Énergie transverse manquante

- Maîtrise des queues de résolution indispensable pour observer signal supersymetrie
- Mesure essentiellement calorimetrique
- Couverture du calorimetre jusqu'à η =5 est essentielle (sinon effet de jets echappant à l'acceptance). Il n'est pas necessaire d'avoir une couverture plus importante
- Résolution ~0.5 $\sqrt{\Sigma}$ Et (en GeV)
- Effets de bruit électronique et empilement réduit en imposant seuil sur Et des cellules utilisées pour calcul Etmiss
- Algorithmes de pondération pour corriger effet de noncompensation, non-linearites à basse énergie, etc...

Etude des queues en impulsion transverse manquante: Evénements Z(->μμ)+1 jet (pt>200 GeV) (TDR Physique Atlas)

Production des squarks et gluinos:

<u>Signature « multijets+Etmiss+0 lepton» typique:</u> 4 jets > 50 GeV (Ptmax>100 GeV), Etmiss>100 GeV Événement « sphérique » Construit Meff = Etmiss+ Σ Pt(jets) Pas de lepton (muon ou e) isoles

Bruits de fond:
W+jets, Z+jets (avec W->lepton v, Z-> v v)
t-tbar (-> désintégration avec 1 ou plusieurs v)
Événements multijets QCD avec Etmiss mal mesurée (section efficace >> section efficace signal)

Exemple pour m(gluino) ~750 GeV, m(squarks)~650 GeV

Maitrise du bruit de fond ?

- Bruit de fond de bosons vecteurs: W,Z+jets: normalisation possible avec canaux tels que Z(->ee)+jets
- Bruit de fond top: MC pour extrapoler entre signal top et bruit de fond à SUSY
- Bruit de fond instrumental: jets+'fausse' énergie transverse manquante:
 - difficile à simuler
 - éliminer les pathologies dans la réponse du détecteur
 - Moyens de contrôle:
 - Signification de Etmiss: Etmiss/Résolution (Résolution=f(ΣEt, doit être mesure dans des échantillons de contrôle)
 - Δφ (ptmiss,jets): pour des événements avec 1 jet mal mesure, ptmiss va pointer en φ dans la direction du jet
 - jets dans les régions de transition entre différents calorimètres

Signatures avec lepton(s) Produit dans cascade de désintégration: par exemple χ⁰₂ -> l+l⁻ χ⁰₁

> Probablement moins sensible aux effets expérimentaux sur Etmiss que canaux sans lepton (bruit de fond QCD supprimé)

M₀ (GeV)

(Modèles GMSB)

LSP = Gravitino, très léger (<< 1 GeV) Plusieurs possibilités suivant type NLSP:

NLSP = neutralino

 χ^0_1 -> Gravitino Photon

* Pour courtes durées de vie, signature spectaculaire avec jet+Etmiss+photons> Peu de bruit de fond du Modèle Standard

* Pour durée de vie plus longue, χ^0_1 peut se désintégrer dans le détecteur

-> photon ne provenant pas du vertex primaire (cf mesure angle γ avec le calorimètre Atlas) => durée de vie => paramètre du Modèle

NSLP = stau

Événements avec des leptons, permettent en général un bon S/B

Détermination des paramètres du Modèle ?

- Mesure des masse des sparticules
- Exemple d'un point mSUGRA (m₀=100 GeV, m_{1/2}=250 GeV, tanβ=10, A=-100 GeV, μ>0) (compatible avec matière noire)
- Etudié dans note Atlas 2004-007
- Favorable car squarks et gluinos sont relativement légers => production abondante, possibilité d'études des désintégrations en cascade (taux de désintégrations => e⁺e⁻ et μ⁺μ⁻ sont assez grands)
- Beaucoup de modes observables et de mesures possibles...

Spectre de masses pour ce point

Battaglia et al hep-ph/0306219 Allanach et al hep-ph/0202233 Production par paires de gluino. Cascade possible:

Quark = quark léger ou b (=> identification de b permet de séparer ces 2 cas) (note: les masses des sbottoms sont différentes des autres squarks)
 Lepton => 2 lepton de même saveur et de signes opposes (e ou μ)
 On peut aussi avoir χ⁰₂ -> stau tau => canal spécifique avec identification des τ

Reconstruction de la cinématique: Précision de 0.1 % sur échelle énergie e et μ Précision de 1% sur échelle énergie des jets Sélection:

•>= 4 Jets (Pt1>150 GeV, Pt2>100 GeV)

•Meff > 600 GeV

- •Etmiss > max(100,0.2*Meff)
- •2 leptons isolés de même saveur et signes opposés

Bruit de fond:

Dominé par t-tbar (Contributions nettement plus faibles de W/Z+jets,WW)

Bruit de fond interne: Autres désintégrations en cascades de SUSY

Pour bruit de fond, les leptons sont produits indépendamment => même nombre de e- μ que e-e + μ - μ (toujours signes opposés) => Bruit de fond peut être « facilement » soustrait statistiquement pour toute distribution

(S/B est > 1 donc peu d'augmentation des incertitudes statistiques)

Énergie manquante (2 neutralinos) => reconstruction complète de masses invariantes impossible Stratégie: examiner les limites des distributions de masse invariantes des particules observables

Exemple: dans désintégration χ_{2}^{0} -> lepton slepton -> lepton lepton χ_{1}^{0} Masse I+I- maximale:

- I - ... f - ...

$$(m_{ll}^2)_{max} = \frac{(m_{\chi_2^0}^2 - m_{\tilde{l}_R}^2)(m_{\tilde{l}_R}^2 - m_{\chi_1^0}^2)}{m_{\tilde{l}_R}^2}$$

(2 désintégrations à 2 corps)

Calcul similaire pour (mqII)_{max} (désintégration du squark) et pour les masses ql

Distribution de masse(lepton-lepton)

Précisions pour 100 fb⁻¹

	1		0	0 0	<u> </u>
	Edge	Nominal Value	Fit Value	Syst. Error	Statistical
				Energy Scale	Error
	$m(ll)^{ m edge}$	77.077	77.024	0.08	0.05
	$m(qll)^{ m edge}$	431.1	431.3	4.3	2.4
	$m(ql)_{ m min}^{ m edge}$	302.1	300.8	3.0	1.5
	$m(ql)_{ m max}^{ m edge}$	380.3	379.4	3.8	1.8
	$m(qll)^{ m thres}$	203.0	204.6	2.0	2.8
1	$m(bll)^{ m thres}$	183.1	181.1	1.8	6.3
/					

Sépare b et quarks légers

Pour 1% d'erreur systématique sur l'échelle d'énergie des jets

Un peu de cinématique...

$$\begin{aligned} \left(m_{qll}^{2}\right)^{\text{edge}} &= \frac{\left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{\chi}_{2}^{0}}^{2}} \\ \left(m_{ql}^{2}\right)^{\text{edge}}_{\min} &= \frac{\left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{\ell}_{R}}^{2}\right)}{m_{\tilde{\chi}_{2}^{0}}^{2}} \\ \left(m_{ql}^{2}\right)^{\text{edge}}_{\max} &= \frac{\left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\ell}_{R}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{\ell}_{R}}^{2}} \\ \left(m_{qll}^{2}\right)^{\text{thres}} &= \left[\left(m_{\tilde{q}_{L}}^{2} + m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{\ell}_{R}}^{2}\right)\left(m_{\tilde{\ell}_{R}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right) \right. \\ &\left. - \left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{\ell}_{R}}^{2}\right)\left(m_{\tilde{\ell}_{R}}^{2} + m_{\tilde{\chi}_{1}^{0}}^{2}\right)^{2} - 16m_{\tilde{\chi}_{2}^{0}}^{2}m_{\tilde{\ell}_{R}}^{4}m_{\tilde{\chi}_{1}^{0}}^{2} \\ &\left. + 2m_{\tilde{\ell}_{R}}^{2}\left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)\right] / \left(4m_{\tilde{\ell}_{R}}^{2}m_{\tilde{\chi}_{2}^{0}}^{2}\right) \end{aligned}$$

=> On peut remonter aux (différences de) masses

Mesure essentiellement des différences de masse avec LSP => +- 5 à 10 GeV de précision si seulement LHC. Si on connaît la masse de χ^0_1 => ~ +- qqs GeV sur de nombreuses masses

Masses du gluino et du sbottom: (même chaîne de désintégration)

$$\tilde{g} \rightarrow \tilde{b}\bar{b} \rightarrow b\chi_2^0\bar{b} \rightarrow bl^+l^-\chi_1^0\bar{b}$$

-> Utilise jets de b pour réduire bruit de fond combinatoire avec autres jets produits dans l'événement

-> Approximation: χ_1^0 est ~au repos dans le centre de masse de χ_2^0

$$\vec{p}(\chi_2^0) = (1 + \frac{m(\chi_1^0)}{m(l^+l^-)})\vec{p}(l^+l^-)$$

(impulsion de χ^0_2 dans labo)

Pour une hypothèse de $\mathbf{m}(\chi_1^0)$, on connaît $\mathbf{m}(\chi_2^0)$ (par méthode précédente) \Rightarrow Reconstruction de $\mathbf{m}(\mathbf{b}\chi_2^0)$ -> masse du sbottom et de $\mathbf{m}(\mathbf{b}\mathbf{b}\chi_2^0)$ -> masse du gluino

et de **m(bb**χ⁰₂) -> masse du gluino (2 combinaisons, choix avec corrélation entre ces masses)

(Possibilité de mettre en évidence les 2 sbottoms de masses différentes, si résolution des jets bien comprise + grande luminosité)

Résolution dominée par approximation dans calcul impulsion χ^0_2

Masse reconstruite gluino (pour bonne hypothèse m(χ^0_1)

Masse gluino ~ 500 GeV+ $m(\chi^0_1)$ (pour cet exemple)

Autres possibilités (1):

Production directe de slepton (interactions faibles) avec désintégration en χ^0_1 + lepton

Signature:

- •2 leptons de même saveur et signes opposes
- •Énergie transverse manquante
- •Pas de jet

Bruits de fond (technique de soustraction des événements e-µ) •WW

- •t-tbar
- •WZ
- •(+bruits de fond SUSY)

Pas de reconstruction directe de la masse. Utilise masse transverse « generalisée » $M_T^2 = \min_{p_1+p_2=p_T} (\max(m_T^2(p_1, p_t(l_1), m_T^2(p_2, p_t(l_2)))$

Permet d'accéder à la masse du slepton_L (plus lourd que slepton_R) Limité par statistique, Précision de quelques GeV sur la différence de masse avec le LSP (pour 300 fb⁻¹)

Autres possibilites (2):

Production de gauginos lourds (χ^0_4, χ^+_2) dans désintégrations des squarks Les rapports de branchement peuvent être de ~quelques pourcents

Par exemple: squark -> χ_4^0 quark -> χ_1^0 |+ |- quark Similaire à cas avec désintégration χ_2^{02} mais masse |+|- plus grande => observable pour 100 fb⁻¹

Autres possibilités (3):

Observation de la désintégration stau-tau de χ^0_2 \Rightarrow Production d'une paire de taus dans l'étation de τ ->hadrons) \Rightarrow Mesure excès d'événements de signes opposes dans distribution M(tt) \Rightarrow Signal observable, Sensible à m(stau)m(LSP)

Pour ce choix particulier des paramètres, on mesure (avec 300 fb⁻¹) les masse des particules avec les précisions suivantes:

Compatibilité des différentes mesures

Est-on sensible au spin des sparticules (=spin particules +- $\frac{1}{2}$) ?

Exemple:

 χ^{0}_{2} principalement wino => couplages chiraux

Quelques conclusions sur Supersymetrie:

- Sensibilité aux squarks et gluinos jusqu'à ~3 TeV (~+ 0.5 TeV avec luminosité SLHC)
- Pour point favorable, possibilité de mesurer de nombreuses masses et de contraindre le Modèle
- Apport externe de m(χ⁰₁) important (voir cours complémentarité LHC/LC)
- Si masse plus grandes:
 - Taux d'événements réduits
 - Certains rapports d'embranchement peuvent être moins favorables
 - Plus difficile de mesurer les paramètres
 - SLHC ?
- Encore pas mal d'études à faire pour étudier tous ces cas...

(variante plus exotique de susy) (la tendance de l'été ?)

Arkani-Hamed, Dimopoulos hep-th/0405159

- Scalaires à masses très grandes (10¹⁰ GeV)
 - pas de problème de FCNC, Violation de CP
 - abandonne argument d'ajustement fin de Mh
- Spins 1/2 masses ~ =< 1 TeV
 - garde l'unification des couplages
 - matière noire
- Particularités:
 - gluino de grande durée de vie
 - production de charginos par Drell-Yan (pas de cascade de squark et gluino)
 - mais toujours higgs léger...
 - => Phénoménologie radicalement différente...