Physics @ CLIC

Albert De Roeck CERN

Introduction Experimenting at a Multi-TeV e+e- Collider Physics Studies and Physics Potential Outlook

Web Site http://clicphysics.web.cern.ch/CLICphysics/

1

Linear e+e- Colliders

Since end of 2001 there seems to be a worldwide consensus (ECFA/HEPAP/Snowmass 2001...)

The machine which will complement and extend the LHC best, and is closest to be realized is a Linear e+e- Collider with a collision energy of at least 500 GeV

PROJECTS:

⇒TeV Colliders (cms energy up to 1 TeV) → ~Technology ready NLC (US) Warm technology (X band) GLC (Japan) Warm technology (X and C band) TESLA (DESY/Europe) Superconducting technology⇒Multi-TeV Collider (cms energy up to 1 TeV) → R&D CLIC (CERN/Europe) Two beam acceleration

Linear e+e- Colliders

- To reach high energies with electron beams in future, linear accelerators are the only possibility (due to the sync. radiation)
- Advantages w.r.t. hadron machines
 - Electron are pointlike particles: all beam energy used in the collision i.e. beam energy in the collision is very monochromatic and tunable
 - Beams can be polarised to a high degree (e-: 80%; e+ 60%)
 - Beams are used once, so can be converted e.g. via Compton scattering (photon collider)
- Disadavantages:
 - Lower energy reach than pp (ppbar) machines
 - Beams are used only once: more effort to make enough luminosity

An e+e- linear collider will be a precision machine!

R&D at CERN: CLIC

• An e^+e^- linear collider optimized for a c.m. energy of 3 TeV with ${\cal L}\cong 10^{35}cm^{-2}s^{-1}$

• Construction can be staged without major modifications, starting an experimental program at lower energies, if useful.

• Aim: 3 TeV collisions, complementing LHC/TeV class LC and breaking new ground, with a final stage up to 5 (10?)TeV

To achieve this within reasonable cost (length \sim 35-40 km), and not too many active elements:

- \rightarrow Accelerating gradient \sim 150 MV/m: Two Beam Acceleration (TBA)
- \rightarrow High beamstrahlungs regime to reach luminosity

→ Challenging beam parameters and machine requirements (nm stability, strong final focus, 30 GHz accelerating structures,...)

Status CTF2: 150-193 MV/m (15 ns pulses)
 CTF3: Under construction: 2002-2006 (drive beam test)

 \Rightarrow J.P Delahaye

FAQs (frequently asked questions)

- Q: CLIC still in R&D state. How far is CLIC behind w.r.t. a TeV collider?
- A: O(5 years)
- Q: When will CLIC demonstrate its readiness as a technology for a LC?
- A: By 2009/2010 (if additional funding will be in place)
- Q: Can CLIC run at lower energies?
- A: Yes you can run in the energy range from 90 GeV-3TeV
- Q: What can we gain on physics reach with CLIC?
- $A: \rightarrow$ This lecture

Building CLIC at CERN?

It is possible!

Geological analyses show that there is a contineous stretch of 40 km parallel to the Jura and the lake, with good geological conditions.

1. Experimenting at CLIC

CLIC Physics Report

Physics case for CLIC documented in a new CERN yellow report CERN-2004-005

CLIC Backgrounds

CLIC 3 TeV e+e- collider with a luminosity ~ 10^{35} cm⁻²s⁻¹ (1 ab⁻¹/year)

E_{cm}	[TeV]	0.5	3	3	
L	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	2.1	10.0	8.0	
$\mathcal{L}_{0.99}$	$[10^{34} { m cm}^{-2} { m s}^{-1}]$	1.5	3.0	3.1	
f_r	[Hz]	200	100	100	
N_b		154	154	154	
Δ_b	[ns]	0.67	0.67	0.67	
N	$[10^{10}]$	0.4	0.4	0.4	
σ_z	$[\mu \mathrm{m}]$	35	30	35	
ϵ_x	$[\mu { m m}]$	2	0.68	0.68	
ϵ_y	$[\mu \mathrm{m}]$	0.01	0.02	0.01	
σ_x^*	[nm]	202	43	pprox 60	
σ_y^*	[nm]	pprox 1.2	1	pprox 0.7	
δ	[%]	4.4	31	21	
n_{γ}		0.7	2.3	1.5	
N_{\perp}		7.2	60	43	
$N_{ m Hadr}$		0.07	4.05	2.3	
$N_{ m MJ}$		0.003	3.40	1.5	
			old	new	
				CLIC	

To reach this high luminosity: CLIC has to operate in a regime of high beamstrahlung

Expect large backgrounds

- # of photons/beam particle
- e+e- pair production
- $\gamma \gamma$ events
- Muon backgrounds
- Neutrons
- Synchrotron radiation

Expect distorted lumi spectrum

Time Structure of the Beams

5 Hz 1 train = 2820 bunches 336 ns apart

Experimenting at CLIC similar to the NLC

Luminosity Spectrum

CLIC.01: $\mathcal{L} = 1.05 \times 10^{35}$

CLIC.02: $\mathcal{L} = 0.40 \times 10^{35}$

Energy loss due to beam-beam interactions

Luminosity within 1% & 5% of c.m. energy

Energy (TeV)	0.5	1	3	5
${\cal L}$ in 1% \sqrt{s}	71%	56 %	30%	25%
${\cal L}$ in 5% \sqrt{s}	87%	71 %	42%	34%

Preliminary Results: expect accuracy $\frac{\delta\sqrt{s'}}{\sqrt{s}}\simeq 10^{-4}$ for 100 ${\rm fb}^{-1}$

yy Background

$\gamma\gamma \rightarrow$ hadrons: 4 interactions/bx with W>5 GeV

Neutral and charged energy

Muon Background

 $e^+e^- \rightarrow t\bar{t}$ at $\sqrt{s} = 3$ TeV + Muon Background (10 BX)

Muon pairs produced in electromagnetic interactions upstream of the IP e.g beam halo scraping on the collimators

GEANT3 simulation, taking into account the full CLIC beam delivery system

of muons expected in the detector ~ few thousand/bunch train (150 bunches/100ns)

 \Rightarrow OK for (silicon like) tracker \Rightarrow Calorimeter?

CLIC Tools for Background/Detector

CLIC

Physics generators (COMPHEP PYTHIA6,...) + CLIC lumi spectrum (CALYPSO)

+ $\gamma \gamma \rightarrow$ hadrons background e.g. overlay 20 bunch crossings (+ e+e- pair background files...)

Detector simulationSIMDET (fast simulation)

• GEANT3 based program

 \Rightarrow Study benchmark processes

A Detector for a LC

Background at the IP enforces use of a mask

CLIC: Mask covers region up to 120 mrad Energy flow measurement possible down to 40 mrad

~TESLA/NLC detector qualities: good tracking resolution, jet flavour tagging, energy flow, hermeticity,...

Detector Parameters

Detector Vertexing	CLIC $15\mu m \oplus \frac{35\mu m GeV/c}{p\sin^{3/2}\theta}$ $15\mu m \oplus \frac{35\mu m GeV/c}{p\sin^{5/2}\theta}$	Starting point: the TESLA TDR detector Adapted to CLIC environment
Solenoidal Field	B = 4 T	
Tracking	$rac{\delta p_t}{p_t^2} = 5. imes 10^{-5}$	Eirst ideas:
E.m. Calorimeter	$rac{\delta E}{E(GeV)}=0.10rac{1}{\sqrt{E}}\oplus 0.01$	
Had. Calorimeter	$\frac{\delta E}{E \ (GeV)} = 0.40 \frac{1}{\sqrt{E}} \oplus 0.04$	3–15 cm VDET
μ Detector	Instrumented Fe yoke	15-80 cm Silicon/forward disks
	$rac{\delta p}{p}\simeq 30\%$ at $100~GeV/c$	240–280 cm ECAL (30 X_0)
Energy Flow	$rac{\delta E}{E~(GeV)}\simeq 0.3rac{1}{\sqrt{E}}$	280–400 cm HCAL (6 λ)
Acceptance	$ \cos \theta < 0.98$	400–450 cm Coil (4T)
mask	120 mrad	450–800 cm Fe/muon
beampipe	3 cm	
small angle tagger	$ heta_{min}=40{ m mrad}$	or all silicon (15-120 cm)
•		more compact

Example B-tagging

 $B \to X$ Decay Length

\sqrt{s} (TeV)	0.09	0.2	0.35	0.5	3.0
	Z^0	HZ	HZ	HZ	$H^+H^-\mid bar{b}$
d_{space} (cm)	0.3	0.3	0.7	0.85	2.5 9.0

B-Decay length is long!

- Define Area of Interest by \pm 0.04 rad cone around the jet axis
- Count hit multiplicity (or pulse height) in Vertex Track layers
- Tag heavy hadron decay by step in detected multiplicity
- Can reach 50% eff./~80% purity

Physics Menu at CLIC

- Higgs sector: light and heavy Higgses, Higgs potential
- Supersymmetry: if exists, will be discovered at a hadron collider Role of CLIC: completing the particle spectra with precision measurements (masses < $\sqrt{s}/2$)
- Particle Factory: if new particles have been detected/predicted at the LHC/LC-500 in the range of 1-5 TeV (New Gauge bosons, Kaluza-Klein resonances, resonances in WW scattering...): CLIC will produce them directly, provide an accurate determination of their couplings and establish their Nature. Also exotic decays (such as Z' \rightarrow heavy Majorana Neutrinos) can be detected.
- If NO new particles are observed directly, probe scales up to the O(100-800) TeV indirectly via precision measurements
- QCD measurements: BFKL, photon structure, α_{s} ,...
- The unexpected???

e+e- at $\sqrt{s} \approx 3-5$ TeV: Expect to break new grounds

Cross Sections at CLIC

Event Rates/Year	3 TeV	5 TeV
(1000 fb^{-1})	10^3 events	10^3 events
$e^+e^- ightarrow tar{t}$	20	7.3
$e^+e^- ightarrow b\overline{b}$	11	3.8
$e^+e^- \rightarrow ZZ$	27	11
$e^+e^- \rightarrow WW$	490	205
$e^+e^- \rightarrow hZ/h u u$ (120 GeV)	1.4/530	0.5/690
$e^+e^- ightarrow H^+H^-(1 { m TeV})$	1.5	0.95
$e^+e^- ightarrow ilde{\mu}^+ ilde{\mu}^- (1 \text{ TeV})$	1.3	1.0

2. Higgs Physics

CLIC

The Higgs Mechanism

The Higgs Field

Particles acquire mass trough interaction with the Higgs field

At least one scalar Higgs boson should be discovered We do not know its mass!!! Except \rightarrow Theory $M_{H} < \sim 1$ TeV

The Higgs coupling to particles is proportional to their mass ⇒Needs to be checked

Reconstruct the Higgs potential (depends on the new physics)

$$\mathcal{V}(\phi) = \mu^2 \mid \phi(x) \mid^2 + \lambda \mid \phi(x) \mid^4$$

Potential energy density of the Higgs field: lowest value is not at zero!

$$g_{HVV} = 2M_V^2/v$$

$$g_{Hff} = m_f/v$$

$$(\sqrt{2}G_F)^{-1/2} \approx 246 \text{ GeV}$$

Vacuum expectation value
 V of the Higgs field

Higgs Production at a e+e- Linear Collider

CLIC

TeV LC: statistics drop for high masses Albert De Roeck (CERN) 23

Higgs Production

CLIC

Rare Higgs Decays: $H \rightarrow \mu\mu$

 $H \rightarrow \mu^+ \mu^-$: Branching Ratio $\sim 10^{-4}$

Not easy to access at a 500 GeV collider

Result for $\sqrt{s} =$ 3.0 TeV with $\int \mathcal{L} =$ 5 ab⁻¹

 $\begin{array}{c|c|c|c|c|c|c|c|c|}\hline M_H & 120 \ \text{GeV} & 140 \ \text{GeV} & 150 \ \text{GeV} \\\hline \delta \text{BR}/\text{BR} & 0.072 & 0.121 & 0.210 \\ & \Rightarrow \ \text{Precision on } g_{\text{H}\mu\mu} & : 3.5\% \rightarrow 10\% \\ & & \text{Albert De Roeck (CERN)} & 25 \\ \hline \end{array}$

Rare Higgs Decays

 $\begin{array}{l} \text{Higgs} \rightarrow \text{BB decays for higher} \\ \text{Higgs masses, e.g. 180 GeV} \end{array}$

CLIC

Higgs Potential

Reconstruct shape of the Higgs potential to complete the study of the Higgs profile and to obtain a direct proof of the EW symmetry breaking mechanism

Albert De Roeck (CERN) 27

Results: e+e- →**H**Hvv

Heavy Higgs (MSSM)

Cross section as function of Higgs mass

 $e^+e^- \rightarrow H^+H^- M_H = 900 \text{ GeV}$

.IC

Study the channel $H^{\pm} \rightarrow tb \rightarrow Wbb \rightarrow qqbb$ Example for $M_H = 880$ GeV (15 BC background) Tag 4 b jets / reconstruct W's from 4 'light' jets / reconstruct t jet \rightarrow events with 8 jets

O(20) events/ ab⁻¹, with negligable background Increase statistics by factor 10 for 'single' H tags Mass measurement $\Delta m/m \sim 1\%$ (3 ab⁻¹) Discovery potential $M_H < 1.2$ TeV (3TeV/3 ab⁻¹)

Higgs: Strength of a multi-TeV collider

- Precision measurements of the quantum numbers and properties of Higgs particles, for large Higgs mass range
- Study of Heavy Higgses (e.g. MSSM H,A,H[±])
- Rare Higgs decays
- Higgs self coupling over a wide range of Higgs masses
- Study of the CP properties of the Higgs...

Parameter	M_H (GeV)	$\delta X/X$
$\delta g_{Htt}/g_{Htt}$	120–180	0.05-0.10
$\delta g_{Hbb}/g_{Hbb}$	180-220	0.01-0.03
$\delta g_{H\mu\mu}/g_{H\mu\mu}$	120-150	0.03-0.10
<i>бдннн/дннн</i>	120-180	0.07 - 0.09
<i>9нннн</i>	120	eq 0 (?)

3. Supersymmetry

Masses of Sparticles

Depend on SUSY parameters, SUSY breaking mechansme ...

We don't really know...

Examples: Scenarios in Constrained MSSM

Sparticle Discoveries

Sparticle Discoveries

Sparticle Discoveries

Particle discovery scan along a WMAP line

Observe all sparticles & measure properties more precisely than at LHC

Selectron and Smuon Measurements

E.G. $m_{1/2} = 300$ GeV, $m_0 = 1450$ GeV, $\tan \beta = 10$, A = 0 GeV, $sign(\mu) > 0$ (mSUGRA) (point E)

Signal $\tilde{\nu_e}\tilde{\nu_e} \rightarrow e^+\chi_1^-e^-\chi_1^+(180)$ Typical 'box' shape of the signal preserved in CLIC environment E.G. $m_{1/2} = 1500 \text{ GeV}, m_0 = 420 \text{ GeV}, \tan \beta = 20, A = 0$ GeV, $sign(\mu) > 0 \text{ (mSUGRA) (point H)}$ $\Rightarrow M_{\tilde{\mu}} = 1150 \text{ GeV}$

Measure inclusive muon spectrum in $\tilde{\mu}
ightarrow \mu \chi^0$

$$\Rightarrow E_{max/min} = \frac{M_{\bar{\mu}}}{2} \left(1 - \frac{M_{\chi^0}^2}{M_{tilde\mu}^2} \right) \times \left(1 \pm \sqrt{1 - \frac{M_{\bar{\mu}}^2}{E_{beam}^2}} \right)$$

Typical 'box' shape of the signal preserved in CLIC environement (1 ab^{-1})

Smuon Mass Precision

Point E:	m _u = ~1500 GeV
Point H:	m_{μ} =~1000 GeV

Point		Beam-	Pol.	\sqrt{s}	∫ L	δM
		strahlung		(TeV)	(ab ⁻¹)	(GeV)
Н	$\tilde{\mu}_L$	none	0/0	3.0-3.5	1	± 11
Н	$\tilde{\mu}_L$	Std.	0/0	3.0-3.5	1	± 15
E	$\tilde{\mu}_L$	none	0/0	3.8-4.2	1	± 29
Е	$ ilde{\mu}_L$	Std.	0/0	3.8-4.2	1	± 36
E	$ ilde{\mu}_L$	none	80/60	3.8-4.2	1	± 17
E	$ ilde{\mu}_L$	Std.	80/60	3.8-4.2	1	± 22

Mass measurements to O(1%) possible

Sensitivity to $\chi_2 \rightarrow \chi_1 + 2$ leptons

Case study: χ_2

Sensitivity (5 σ) for LHC and LC

 $tan \ \beta = 10$

Mass measurement precision $m\chi_2$ = 540 GeV, $m\chi_1$ =290 GeV

CLIC

Importance of Precision Measurements

Reconstruct the theory at the high scale from measured masses and cross sections, evolve with Renormalization Group Equations. Do the masses unify at a higher GUT scale? \Rightarrow Precision measurements are crucial!

SUSY: Strength of a Multi-TeV Collider

- Complete the SUSY spectrum further (extended reach w.r.t. LC and LHC)
- Measure properties of sparticles with linear collider type of precisions in the high mass range (e.g. masses up to 1%, spin, mixing angles, tan β , gaugino couplings, slepton quantum numbers...) \rightarrow see CLIC Report for details

Smuon mass, 1 ab⁻¹

$\delta p/p^2$	Beamstrahlung	Fit Result (GeV)
0.	none	1150 ± 10
3.0×10^{-5}	none	1150 ± 12
4.5×10^{-5}	none	1151 ± 12
4.5×10^{-5}	Std.	1143 ± 18

4. Extra Dimensions

Large Extra Dimensions

ADD: Arkani - Ahmed, Dimopolous, Dvali

Problem:

$$m_{EW} = \frac{1}{(G_F \cdot \sqrt{2})^{\frac{1}{2}}} = 246 \text{ GeV}$$
 $M_{Pl} = \frac{1}{\sqrt{G_N}} = 1.2 \cdot 10^{19} \text{ GeV}$

Idea of from String Theory (assumes 11 space-time dimensions) Assume the world we see is in 4 dimensions but that gravity can expand in $4+\delta$ dimensions. Extra dimensions have size R (mm to fm)

$$V(r) \sim \frac{m_1 m_2 1}{M_{Pl}^2} r$$

$$egin{aligned} V(r) &\sim rac{m_1 m_2}{M_D^{\delta+2}} rac{1}{r^{\delta+1}}, & (r \ll R) \ V(r) &\sim rac{m_1 m_2}{M_D^{\delta+2} R^{\delta}} rac{1}{r}, & (r \gg R) \end{aligned}$$

Large Extra Dimensions

Albert De Roeck (CERN) 43

Extra Dimension Reach

Example: Deviations from SM due to virtual Kaluza Klein Graviton effects

100

 $p\overline{p} \to t\overline{t}$

6.0

KK Towers

Extra Dimensions Randall-Sundrum phenomenology (curves by T. Rizzo)

Extra Dimensions

TeV scale extra dimensions \Rightarrow SM gauge field in the bulk \Rightarrow May lead to complicated spectra in e.g. e+e- $\rightarrow \mu\mu$ (interference effects/spin-1 states)

Rigid/Soft Branes

ADD Models

Rigid brane: Coupling of massive KK towers is exactly the same for less massive towers

Soft branes: Coupling of higher mass KK towers reduced

 $g_n^2 \rightarrow g_n^2 e^{-(m/\Delta)^2}$ Δ = wall tension

could have any value but expected ~ O(TeV)

Universal Extra Dimensions UED

- All particles can go into the bulk KK-partners for all particles!
- Resulting spectrum looks very similar to a SUSY spectrum (there are subtle differences)
- \Rightarrow ? Did we discover SUSY or UEDs?
- Important difference: spin of the KK same as SM partner, while it differs by ½ from SUSY sparticles → measure spin
- Not easy at the LHC but doable at a LC
- Compare SUSY/UED for 500 GeV (s)muons

$$e^+e^- \rightarrow \mu_1^+\mu_1^- \longleftrightarrow e^+e^- \rightarrow \tilde{\mu}^+\tilde{\mu}^-$$

Production polar angle θ of the decay muons

Black Holes

If $M_{planck} \sim O(1 \text{ TeV}) \Rightarrow Black Hole production at Multi-TeV Scale$

- $\sigma = \pi R_{c}^{2} \sim 1 \text{ TeV}^{-2} \sim O(100) \text{ pb}$ R_e = Schwarzschild Radius
- If √s _{e+e-}>M_{BH}>M_{planck} →BH factory
 BH lifetime ~ 10⁻²⁵-10⁻²⁷ sec
- Decay via 'Democratic' Hawking Radiation

$$\sigma \sim \pi R_s^2 \sim 1 \text{ TeV}^{-2} \sim 10^{-38} \text{ m}^2 \sim 100 \text{ pb}$$

parton
 $M^2 = s^2$
parton

BH Production at CLIC

3 TeV

5 TeV

EDs: Strength of a multi-TeV collider

- Extended sensitivity to Extra Dimensions into several tens of TeV range
- Can observe directly/study KK resonances in the few TeV range. Measure quantum numbers and properties precisely. Distinguish between models.
- Large lever arm in energy to study more complicated ED scenarios such as soft branes
- If the Planck scale is $O(1 \text{ TeV}) \rightarrow \text{micro black hole}$ production. Study quantum gravity in the lab

ED (ADD)	30 TeV (e^+e^-)
	55 TeV ($\gamma\gamma$)
ED (RS)	18 TeV (c=0.2)
ED (TeV ⁻¹)	80 TeV
Black Holes	5 TeV

5. New Gauge Theories Contact Interactions etc.

Z Profile Measured at LEP

Z' with mass < 3 (5) TeV

 $4\sqrt{s}$ Scan (Z⁰-like Lineshape Scan) $e^+e^- \rightarrow Z' \rightarrow f\bar{f}$

★ Assume $M_{Z'} = 3.0$ TeV and $\Gamma(Z')/M_{Z'} \simeq \Gamma(Z^0)/M_{Z^0}$ (Γ_{SM});

★ Compute $\sigma(e^+e^- \rightarrow Z')$ vs. \sqrt{s} including ISR and beamstrahlung for a range of mass and $\Gamma(Z')/\Gamma_{SM}$ values;

★ Assume $\int L = 1000 \text{ fb}^{-1}$ (CLIC.01) or 400 fb⁻¹ (CLIC.02) shared in 3-7 points scan and extract $M_{Z'}$, $\Gamma(Z')/\Gamma_{SM}$ and σ_{peak} from χ^2 fit:

54

Degenerate Resonances

Smearing due to the lumi spectrum of CLIC

E.G. Degenerate BESS Model (Strong EWSB) D. Dominici, De Curtis, M. Battaglia

Two (almost) degenerate Triples $L_3, L_3^{\pm}, R_3, R_3^{\pm}$

Sensitivity to L_3 and R_3 with M = 3 TeV for L = 500 fb⁻¹ at LHC and L = 1000 fb⁻¹ at CLIC

g/g''	M	$\Gamma_{L_3} / \Gamma_{R_3}$	$S/\sqrt{S+B}$	$S/\sqrt{S+B}$	ΔM
	(GeV)	(GeV)	LHC $(e + \mu)$	CLIC (had.)	CLIC
0.1	3000	2.0 / 0.3	(3.4)	62	23.20 ± .06
0.2	3000	8.2 / 1.2	(6.6)	152	$83.50 \pm .02$

Energy Scan of Narrow Resonances (g/g'' = 0.15)

CLIC can disentangle two nearby resonances

Precision Measurements

 \Rightarrow Sensitivity to $M_{Z'}$ to 30-40 TeV

WW Scattering

In case that there is no Higgs: WW scattering will show effects of strong dynamics in the TeV region \Rightarrow Study $W_L W_L \rightarrow W_L W_L$ scattering

CLIC

Resonances can form in the TeV range that can be observed directly (difficult at the LHC)

Little Higgs Models

• Stabelizing the Higgs with new weakly coupled fermions and Gauge bosons \Rightarrow Expect 'new top' quark and new W_{H} , Z_{H} around 1 TeV. \Rightarrow Expect the new gauge bosons to be copiously be produced at a LC, e.g. via the associated production $e+e-\rightarrow WW_{H}$

Allow for detailed studies of W_H (and other new particles) properties

Triple Gauge Couplings

High precision analysis of the self coupling of the EW gauge bosons

Expectation of the precision for $\Delta\lambda_{\gamma}$ and $\Delta\kappa_{\gamma} \sim 10^{-4}$

Measurements for one year of high luminosity for the future colliders

⇒ Contact Interactions: sensitivity to scales up to 100-400 TeV Ultimate: 5 ab⁻¹ at 5 (10) TeV → 400-800 (500-1000) TeV Remember: If Higgs light → something new must happen before 1000 TeV

A light Higgs...important consequences

A light Higgs implies that the Standard Model cannot be stable up to the GUT or Planck scale (10^{19} GeV)

Alternative Theories

- Excited lepton production
- Production of 4th family quarks and leptons
- Leptoquarks
- Effects of non-commutative interactions on physical observables
- Transplanckian effects when the centre of mass system energy is above the fundamental gravity mass scale
- Lepton size measurements

Radius cm	\sqrt{s} (TeV)
$3.0 \cdot 10^{-18}$	1
$1.2\cdot10^{-18}$	3
$0.9\cdot10^{-18}$	5

Summary: CLIC vs Hadron Colliders

ADR, F. Gianotti, J. Ellis hep-ph/0112004 + updates U. Bauer et al. hep-ph/0201227

Process	LHC	SLHC	VLHC*	CLIC
	14 TeV	14 TeV	200 TeV	3-5 TeV
	100 fb^{-1}	1000 fb^{-1}	100 fb^{-1}	$1000 \ fb^{-1}$
squarks (TeV)	2.5	3	20.	1.5-2.5
sleptons (TeV)	0.34			1.5-2.5
Z' (TeV)	5.4	6.5	30-40	20-30
q* (TeV)	6.5	7.5	70-75	3-5
I* (TeV)	3.4			3-5
ED (ADD/2D/TeV)	9	12	6 5	30-55
$W_L W_L$	3 .4 σ	> 4.0 σ	30 σ	70-90 σ
TGC (95%)	0.0014	0.0006	0.0003	0.00013- 0.00008
Λ Compos (TeV)	30	40	100	300-400

CLIC Comparable to VLHC

* Very Large Hadron Collider: 233 km Circumference

Summary: CLIC Physics Potential

Measurements at CLIC (5 TeV / 1 ab^{-1})

		۰.		
Higgs (Light)	λ_{HHH} to $\sim 5-10\%$ (5 ab $^{-1}$)		Experimental conditions at CLIC	
Higgs (Light)	$g_{H\mu\mu}$ to $\sim 3.5-10\%$ (5 ab $^{-1}$)		are more challenging than e.g. at	
Higgs (Heavy)	2.0 TeV (e^+e^-) 3.5 TeV $(\gamma\gamma)$		I FP or even a TeV collider	
squarks	2.5 TeV			
sleptons	2.5 TeV		Physics studies for CLTC	
Z' (direct)	5 TeV		have included the offects of the	
Z' (indirect)	30 TeV		nuve included the effects of the	
l^*, q^*	5 TeV		derector, and backgrounds	
TGC (95%)	0.00008		such as $e+e-$ pairs and $\gamma\gamma$ events.	
Λ compos.	400 TeV		Developments at unling allows the at CLT	
$W_L W_L$	> 5 TeV		will allow for precision	
ED (ADD)	30 TeV (e^+e^-)			
	55 TeV $(\gamma\gamma)$		measurements in the lev range	
ED (RS)	18 TeV (c=0.2)			
ED (TeV $^{-1}$)	(TeV ⁻¹) 80 TeV		very large physics potential, reach	
Resonances	$\delta M/M, \delta \Gamma/\Gamma \sim 10^{-3}$		beyond that of the LHC.	
Black Holes	5 TeV			