
food for thought: (simple)

what result would one get if one measured the mass of a V_e (in K-capture for instance)? what result would one get if one measured the mass of a V_u (in pion decay)?

Is energy conserved when neutrinos oscillate?

Ve

on mesure une distribution de masses avec trois valeurs possibles ayant les prob.

GIF2004 Alain Blondel

Is energy conserved when neutrinos oscillate?

Energy (i.e. mass) eigenstates propagate

$$|v(t)\rangle = U_{1e} |v_1\rangle \exp(i E_1 t)$$

+ $U_{2e} |v_2\rangle \exp(i E_2 t)$
+ $U_{3e} |v_3\rangle \exp(i E_3 t)$

$$P(v_1) = |U_{1e}|^2$$

$$P(v_2) = |U_{2e}|^2$$

$$P(v_3) = |U_{3e}|^2$$
sont conservées durant la propagation

Future Neutrino Experiments

```
neutrinoless double beta decay
oscillations and search for CP vioaltion
road map
Reactor experiments
T2K
```

Future facilities and their challenges
Neutrino factory physics
Proton drivers
Target and Collection
Neutrino Factory challenges
muon cooling
acceleration (FFAGs)
Beta-Beam challenges

See NUFACT04 site:

http://www-kuno.phys.sci.osaka-u.ac.jp/~enufact04/http://muonstoragerings.cern.ch GIF2004 Alain Blondel

Where are we?

- 1. We know that there are three families of active, light neutrinos (LEP)
- 2. Solar neutrino oscillations are established (Homestake+Gallium+Kam+SK+SNO+KamLAND)
- 3. Atmospheric (ν_{μ} ->) oscillations are established (IMB+Kam+SK+Macro+Sudan+K2K)
- 4. At that frequency, electron neutrino oscillations are small (CHOOZ)

This allows a consistent picture with 3-family oscillations

$$\theta_{12} \sim \! 30^0 \qquad \Delta m_{12}^{\,2} \sim \! 8 \ 10^{\text{-5}} eV^2 \qquad \theta_{23} \sim \! 45^0 \qquad \Delta m_{23}^{\,2} \sim 2.5 \ 10^{\text{-3}} eV^2 \qquad \theta_{13} < \sim 10^0$$
 with several unknown parameters θ_{13} , δ , mass hierarchy

Where do we go?

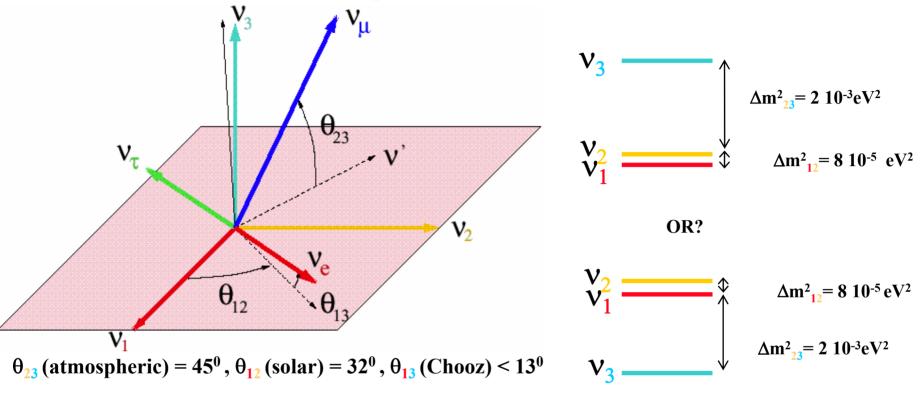
leptonic CP & T violations

=> an exciting experimental program for at least 25 years *)

*)to set the scale: CP violation in quarks was discovered in 1964 and there is still an important program (K0pi0, B-factories, Neutron EDM, LHCb, BTeV....) to go on for >>10 years...i.e. a total of >50 yrs.

and we have not discovered leptonic CP yet!

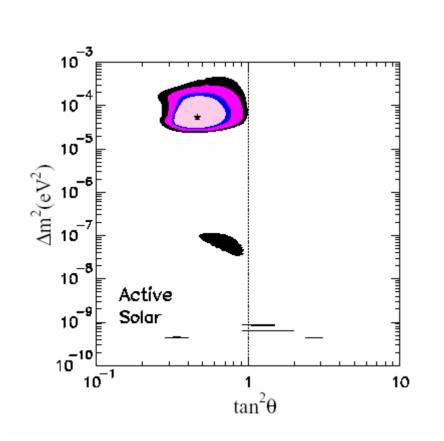
5. LSND? ($\rightarrow miniBooNe$)

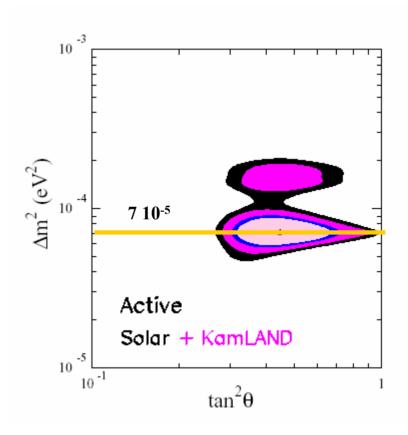

This result is not consistent with three families of neutrinos oscillating, and is not supported (nor is it completely contradicted) by other experiments.

If confirmed, this would be even more exciting

See Barger et al PRD 63 033002

The neutrino mixing matrix: 3 angles and a phase δ

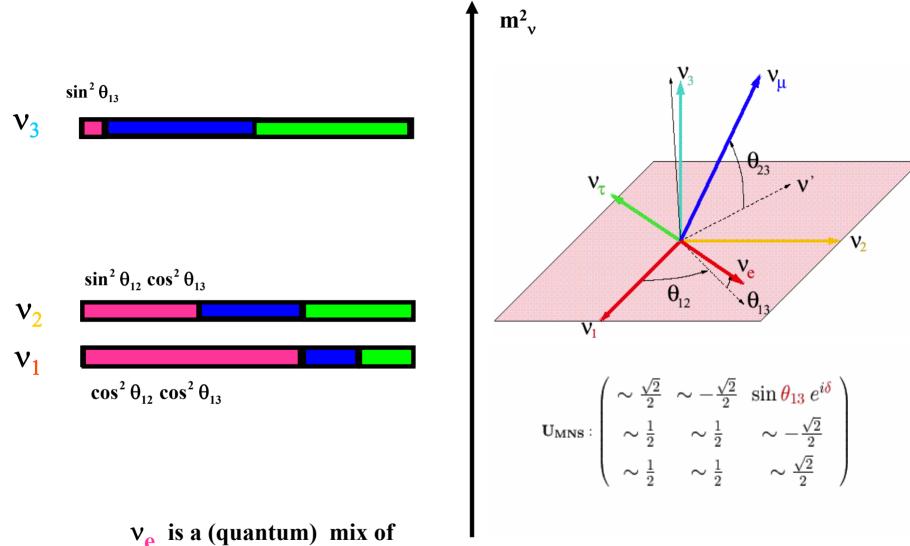

$$\mathbf{U_{MNS}}: \left(\begin{array}{ccc} \sim \frac{\sqrt{2}}{2} & \sim -\frac{\sqrt{2}}{2} & \sin \theta_{\mathbf{13}} \ e^{i\boldsymbol{\delta}} \\ \sim \frac{1}{2} & \sim \frac{1}{2} & \sim -\frac{\sqrt{2}}{2} \\ \sim \frac{1}{2} & \sim \frac{1}{2} & \sim \frac{\sqrt{2}}{2} \end{array} \right)$$


Unknown or poorly known even after approved program: θ_{13} , phase δ , sign of Δm_{13}^2

Prerequisite for CP violation in neutrinos: Solar LMA solution

Before KamLAND

After KamLAND



This will be confirmed and Δm_{12}^2 measured precisely by KAMLAND and maybe Borexino in next 2-4 yrs

GIF2004 Alain Blondel

neutrino mixing (LMA, natural hierarchy)

 V_1 (majority, 65%) and V_2 (minority 30%)

with a small admixture of V_3 (<13%) (CHOOZ)

Neutrinos have mass and mix

This is NOT the Standard Model

why cant we just add masses to neutrinos?

$$V_i = \overline{V}_i$$

or

Dirac neutrinos?

$$V_i \neq \overline{V}_i$$

 $e+ \neq e- since Charge(e+) = - Charge(e-).$

But neutrinos may not carry, any conserved charge-like quantum number.

There is NO experimetal evidence or theoretical need for a conserved Lepton Number L as

$$L(v) = L(I-) = -L(v) = -L(I+) = 1$$

Adding masses to the Stadard model neutrino 'simply' by adding a Dirac mass term

$$m_D v_L \overline{v}_R$$

implies adding a right-handed neutrino.

No SM symmetry prevents adding then a term like

$$m_M \overline{\nu_R}^c \, \nu_R$$

and this simply means that a neutrino turns into a antineutrino (the charge conjugate of a right handed antineutrino is a left handed neutrino!)

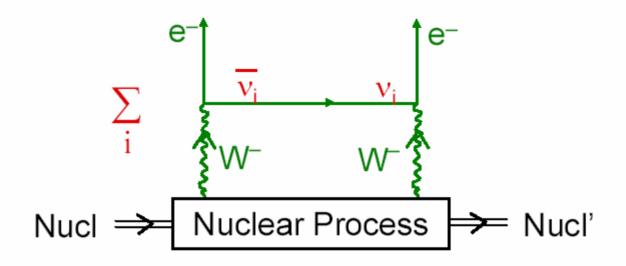
this does not violate spin conservation since a left handed field has a component of the opposite helicity (and vice versa)

$$v_L \approx v_- + v_+ m/E$$

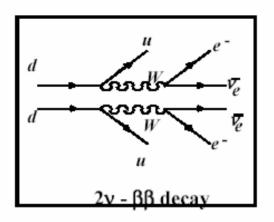
Pion decay with massive neutrinos

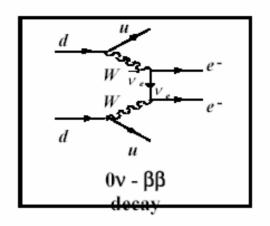
$$\frac{\pi^{+} \quad \mu^{+}}{\nu_{L}} + \frac{\pi^{+} \quad \mu^{+}}{\nu_{L}} + \frac{\nu_{L}}{\nu_{L}^{c}} = \overline{\nu_{R}}$$

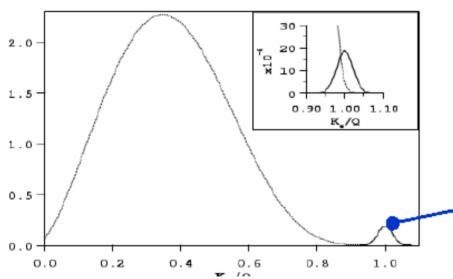
$$\frac{\pi^{+} \quad \mu^{+}}{\nu_{L}} = \frac{\pi^{+} \quad \mu^{+}}{\nu_{L}} = \frac{\pi^{+$$


$$(.05/30 \ 10^6)^2 = 10^{-18}$$

no problem, but not observable


The Idea That Can Work —


Neutrinoless Double Beta Decay [0νββ]



By avoiding competition, this process can cope with the small neutrino masses.

Two neutrino $\beta\beta$ decay has been detected in ten nuclei also into exited states

Three Neutrino Mixing

$$\nu_{l\mathsf{L}} = \sum_{j=1}^{3} U_{lj} \, \nu_{j\mathsf{L}} \; .$$

U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS trino mixing matrix.

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

 $U - n \times n$ unitary:

mixing angles:

 $\frac{1}{2}n(n-1)$

$U = V \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13}e^{i\delta} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13}e^{i\delta} \end{pmatrix}$$

$$1 \quad 3 \quad 6 \quad (5)$$

CP-violating phases:

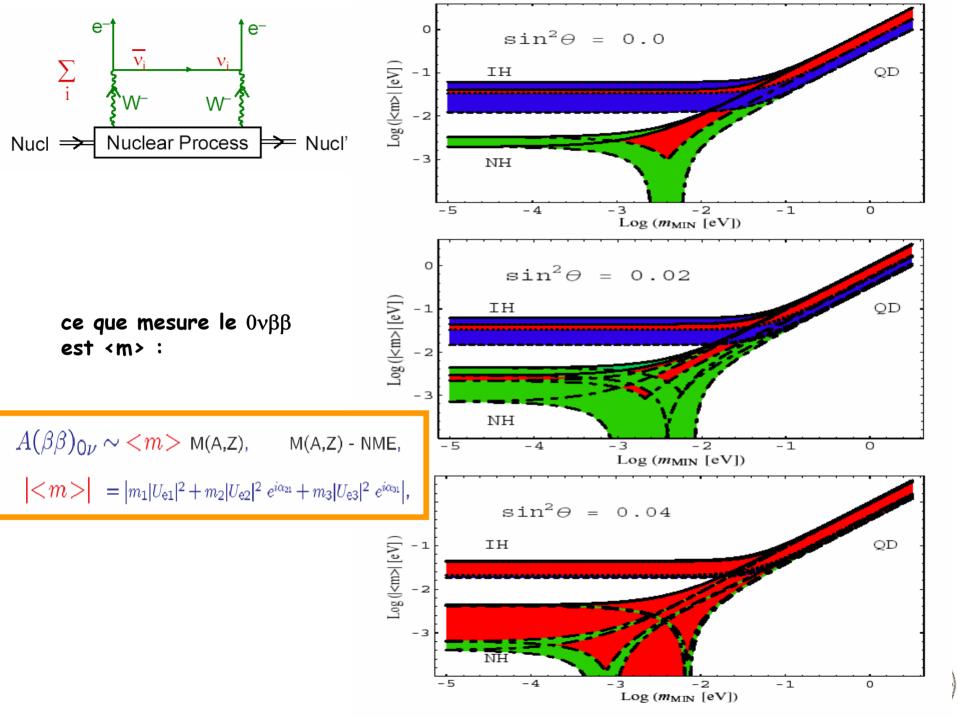
•
$$\nu_j$$
 – Dirac:

$$(n-1)(n-2)$$

•
$$\nu_i$$
– Majorana:

$$\frac{1}{2}n(n-1)$$

•
$$\nu_j$$
 - Dirac: $\frac{1}{2}(n-1)(n-2)$ 0 1 3 $A(\beta\beta)_{0\nu} \sim \langle m \rangle$ M(A,Z), M(A,Z) - NME,
• ν_j - Majorana: $\frac{1}{2}n(n-1)$ 1 3 6 $|\langle m \rangle| = |m_1|U_{e1}|^2 + m_2|U_{e2}|^2 e^{i\alpha_{21}} + m_3|U_{e3}|^2 e^{i\alpha_{31}}|$,

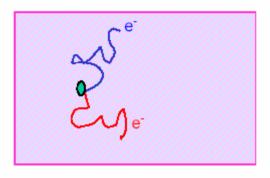

$$| < m > | = |m_1|U_{e1}|^2 + m_2|U_{e2}|^2 e^{i\alpha_{21}} + m_3|U_{e3}|^2 e^{i\alpha_{31}}|$$

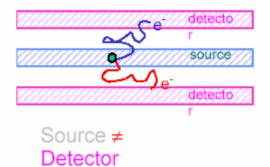
$$n=3$$
: 1 Dirac and

2 additional CP-violating phases, Majorana phases

S.M. Bilenky, J. Hosek, S.T.P., 1980; J. Schechter, J.W.F. Valle, 1980; M. Doi, T. Kotani, E. Takasugi, 1981

$$(G_F)^4$$


Experimental approach

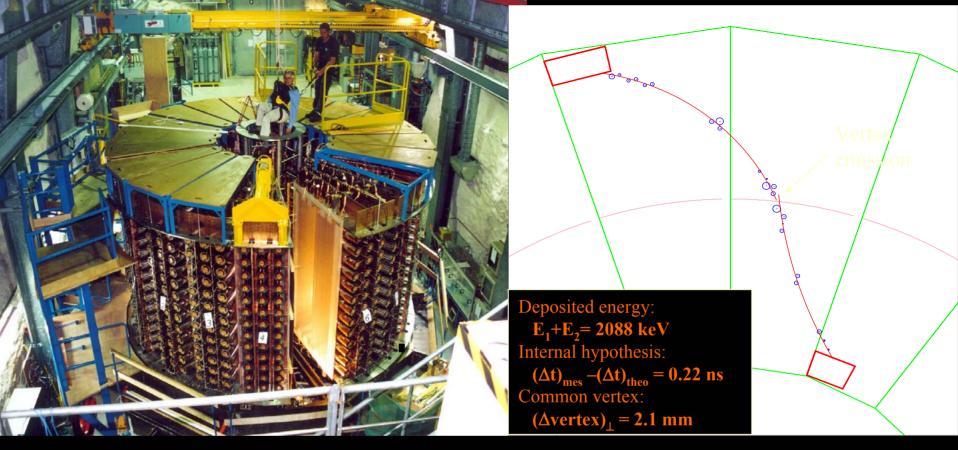

Geochemical experiments 82 Se = > 82 Kr, 96 Zr = > 96 Mo (?), 128 Te = > 128 Xe (non confirmed), 130 Te = > 130 Te Radiochemical experiments 238 U = > 238 Pu (non confirmed)

Direct experiments

Source = detector (calorimetric)

Source ≠ detector

Summary of the most recent 2 v experiments :


2v	β	

Isotope	τ _{1/2} ^{2v} (y) [measured]	τ _{1/2} ^{2v} (y)[calculated]
⁴⁸ Ca	$(4.2^{+2.1}_{-1.0}) \times 10^{19}$	$6 \times 10^{18} - 5 \times 10^{20}$
⁷⁶ Ge	$(1.42^{+0.09}_{-0.07}) \times 10^{21}$	$7 \times 10^{19} - 6 \times 10^{22}$
⁸² Se	$(0.9 \pm 0.1) \times 10^{20}$	$3 \times 10^{18} - 6 \times 10^{21}$
⁹⁶ Zr	$(2.1^{+0.8}_{-0.4}) \times 10^{19}$	3×10^{17} - 6×10^{20}
¹⁰⁰ Mo	$(8.0 \pm 0.7) \times 10^{18}$	$1 \times 10^{17} - 2 \times 10^{22}$
¹⁰⁰ Mo(0**)	$(6.8 \pm 1.2) \times 10^{20}$	$5 \times 10^{19} - 2 \times 10^{21}$
¹¹⁶ Cd	$(3.3^{+0.4}_{-0.3}) \times 10^{19}$	$3 \times 10^{18} - 2 \times 10^{21}$
¹²⁸ Te	$(2.5 \pm 0.4) \times 10^{24}$	$9 \times 10^{22} - 3 \times 10^{25}$
¹³⁰ Te	$(0.9 \pm 0.15) \times 10^{21}$	$2 \times 10^{19} - 7 \times 10^{20}$
¹⁵⁰ Nd	$(7.0 \pm 1.7) \times 10^{18}$	$6 \times 10^{16} - 4 \times 10^{20}$
²³⁸ U	$(2.0 \pm 0.6) \times 10^{21}$	1.2 × 10 ¹⁹

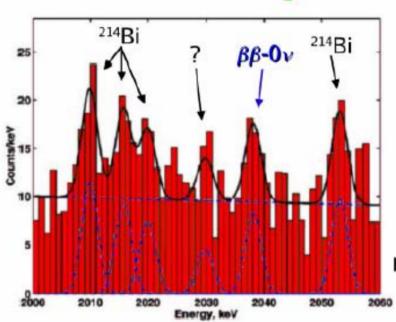
Summary of the most sensitive neutrinoless $\beta\beta$ experiments $\text{O}\nu\beta\beta$

Experim	Isotope	τ _{1/2} 0ν (γ)	m* _{ee} (eV)	Range m _{ee}		
Heidelberg - Moscow 2001	760-	$> 1.9 \times 10^{25}$	< 0.35	< 0.3 - 2.5		
IGEX 2002	9	$> 1.57 \times 10^{25}$	< 0.38	< 0.3 - 2.5		
Mi DBD - v 2002	¹³⁰ Te	$> 2.1 \times 10^{23}$	< 1.5	< 0.9 - 2.1		
Bernatowicz et al. 1993 (GEO)	128Te9co	$> 7.7 \times 10^{24}$	< 1.0	< 1.0 - 4.4		
Belli et al. 2003	¹³⁶ Xe	$> 1.2 \times 10^{24}$	< 1.0	< 0.8 - 2.4		
Bizzeti et al. 2003	116Cd	$> 1.7 \times 10^{23}$	< 1.7	< 1.6 - 5.5		
Ejiri et al. 2001	¹⁰⁰ Mo	$> 5.5 \times 10^{22}$	< 4.8	< 1.4 - 256		
Osawa I. et al. 2002	⁴⁸ Ca	$> 1.8 \times 10^{22}$	< 6.0			
* Staudt, Muto, Klapdor-Kleingrothaus Europh. Lett 13 (199						

NEMO

Criteria to select $\beta\beta$ events:

- 2 tracks with charge < 0
- 2 PMT, each > 200 keV
- PMT-Track association
- Common vertex


- Internal hypothesis (external event rejection)
- No other isolated PMT (γ rejection)
- No delayed track (²¹⁴Bi rejection)

evenement $2\nu\beta\beta$ typique GIF2004 Alain Blondel

Heidelberg-Moscow exp.: evidence for $\beta\beta$ -0 ν of ⁷⁶Ge

- best exploitation of the Ge detector technique proposed by E. Fiorini in 1960
 - ▶ longest running experiment (13 years) with largest exposure (71.7 kg×y)
 - Status-of-the-art for low background techniques and for enriched Ge detectors
 - reference for all last generation $\beta\beta$ -0 ν experiments


```
1990 – 2003 data, all 5 detectors exposure = 71.7 kg×y \tau_{y_2}^{6v} = 1.2 \times 10^{25} \text{ years} \langle m_{y_2} \rangle = 0.44 \text{ eV}
```

H.V.Klapdor-Kleingrothaus et al., Phys. Lett. B 586 (2004) 198

- still, community does not fully accept the result, because:
 - ▶ signal is indeed **too faint** (4 σ) to be *blindly* accepted: people still find some weak points in the published analysis
 - presence of not understood peaks around the signal and with similar significance
 - impossibility to check an energy window larger than the published one
- nevertheless any future $\beta\beta$ -0 ν experiment will have to cope with this result

0νββ CONC LUSIONS

- Present limits (or indication) are at the level of a fraction of eV for <m>, neutrino oscillations demand a few 10 meV sensitivities, namely an improvement of an order of magnitude or two
- sensitivity on <m > depends linearly on nuclear matrix element and on the square root of the inverse of the limit on half-life
- if no evidence is observed limit on lifetime depend linearly on isotopic abundance, and on the square root of the mass, the measurement time and the inverse of the energy resolution and of the background

one needs to:

- increase the isotopic abundance (expensive, slow, careful to the background)
- increase the mass (expensive and technically complicated)
- increase the time of measurement (tedious)
- Increase the energy resolution (already at the level of a few keV)
- Decrease the background (already at ~ 0.1 counts-1 keV-1 kg-1 y-1)

Searches on neutrinoless double beta decay are a multidisciplnary challenge for an experimentalist involving astroparticle and nuclear physics, material science cosmochronology, low radioactivity/etc.Blondel

Road Map

A Experiments to find θ_{13} :

search for $v_u \rightarrow v_e$

--in conventional v_{μ} beam (MINOS, ICARUS/OPERA)

limitations: NC π^0 background, intrinsic ν_e component in beam

- -- in reactor experiments
- --Off-axis beam (JPARC-SK, off axis NUMI) or
- --Low Energy Superbeam (BNL → Homestake, SPL → Fréjus)

B Precision experiments to find CP violation

- or to search further if θ_{13} is too small

-- beta-beam
6
 +++ 6 ++++ $^{-}$ and 18 Ne $^{10+}$ \rightarrow 18 F $^{9+}$ v_e e $^{+}$

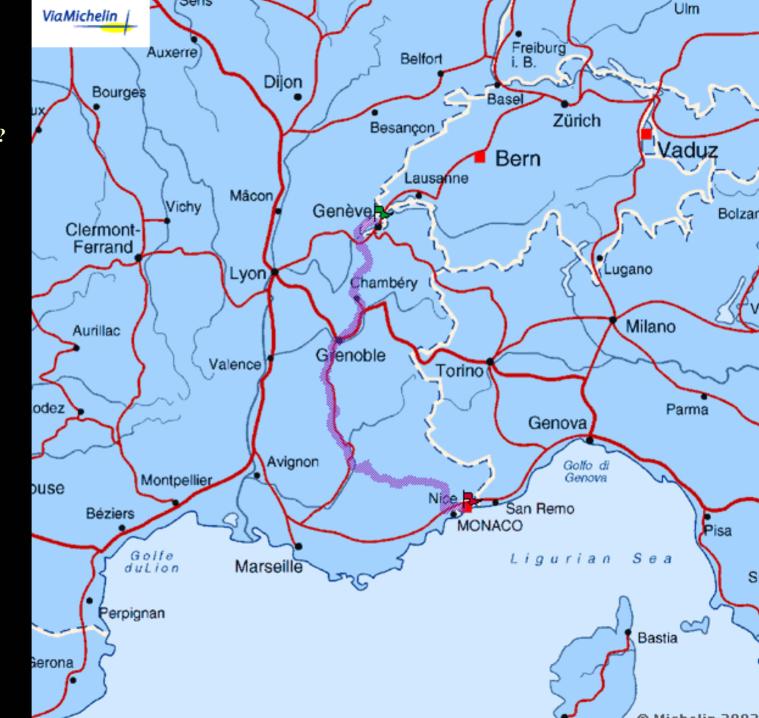
-- Neutrino factory with muon decay storage ring

- and
$$\mu^- \rightarrow e^- \overline{V}_e V_\mu$$

Roadmap

Where do we stand?

Where do we go?


Which way do we chose?

Shortest?

Cheapest?

Fastest?

Taking into account practicalities or politics?

Oscillation maximum 1.27 Δm^2 L / E = $\pi/2$

Atmospheric $\Delta m^2 = 2.5 \ 10^{-3}$ eV ² L = 500 km @ 1 GeV Solar $\Delta m^2 = 7 \ 10^{-5}$ eV ² L = 18000km @ 1 GeV

 $L = 18000 \text{km} \ \text{@} \ 1 \text{ GeV}$

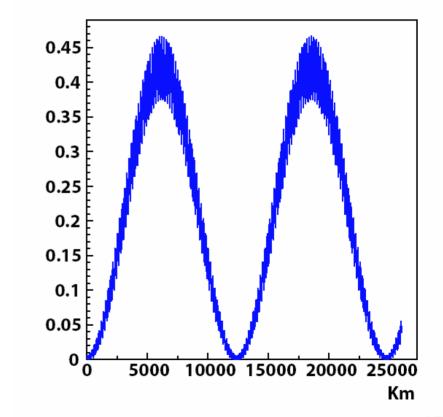
Consequences of 3-family oscillations:

There will be $v_{\mu} \leftrightarrow v_{e}$ and $v_{\tau} \leftrightarrow v_{e}$ oscillation at L atm

$$P(v_{\mu} \leftrightarrow v_{e})_{max} = \sim \frac{1}{2} \sin^{2}\theta_{13} + ... \text{ (small)}$$

There will be CP or T violation

CP:
$$P(v_u \leftrightarrow v_e) \neq P(v_u \leftrightarrow v_e)$$


T:
$$P(v_{\mu} \leftrightarrow v_{e}) \neq P(v_{e} \leftrightarrow v_{\mu})$$

III we do not know if the neutrino v_1 which contains more ve

> is the lightest one (natural?) or not.

Oscillations of 250 MeV neutrinos:

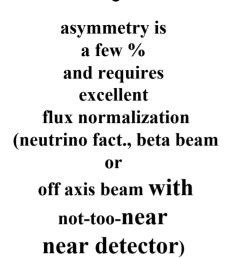
$$P(v_{\mu} \leftrightarrow v_{e})$$

$$P(v_e \rightarrow v_u) = |A|^2 + |S|^2 + 2 A S \sin \delta$$

$$P(v_e \rightarrow v_{\mu}) = |A|^2 + |S|^2 - 2 A S \sin \delta$$

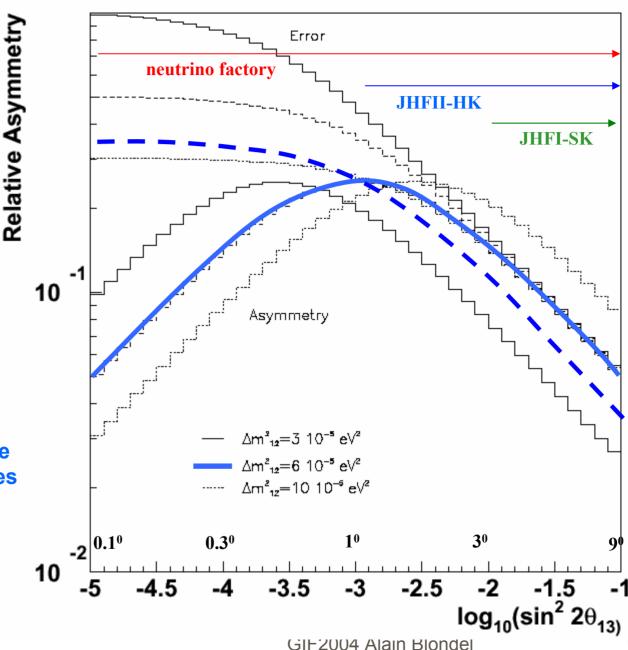
$$\frac{P(\nu_{e} \rightarrow \nu_{\mu}) - P(\overline{\nu}_{e} \rightarrow \overline{\nu}_{\mu})}{P(\nu_{e} \rightarrow \nu_{\mu}) + P(\overline{\nu}_{e} \rightarrow \overline{\nu}_{\mu})} = A_{CP} \alpha \frac{\sin \delta \sin (\Delta m^{2}_{12} L/4E) \sin \theta_{12}}{\sin \theta_{13} + \text{solar term...}}$$

... need large values of sin θ_{12} , Δm^2_{12} (LMA) but *not* large sin $^2\theta_{13}$

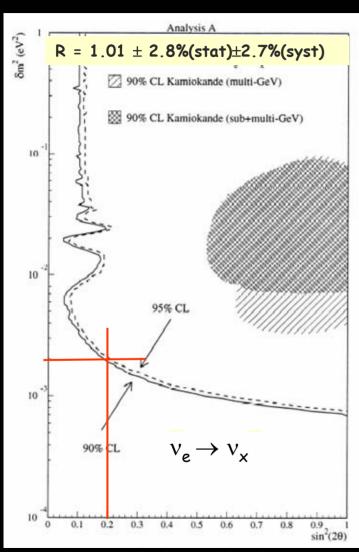

... need APPEARANCE ... $P(v_e \rightarrow v_e)$ is time reversal symmetric (reactors or sun are out)

... can be large (30%) for suppressed channel (one small angle vs two large)

at wavelength at which 'solar' = 'atmospheric' and for $v_e \rightarrow v_{\mu}$, v_{τ} ... asymmetry is opposite for $v_e \rightarrow v_{\mu}$ and $v_e \rightarrow v_{\tau}$ GIF2004 Alain Blondel

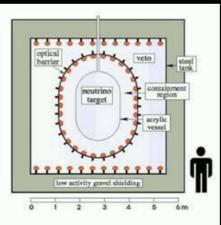


T asymmetry for $\sin \delta = 1$



NOTE:

This is at first maximum! Sensitivity at low values of θ_{13} is better for short baselines, sensitivity at large values of θ_{13} may be better for longer baselines (2d max or 3d max.) This would desserve a more careful analysis!



θ_{13} : Best current constraint: CHOOZ

<u>M. Apollonio</u> et. al., Eur.Phys.J. C27 (2003) 331-374

World best constraint!

$$@\Delta m_{atm}^2 = 2 \ 10^{-3} \ eV^2$$

$$\sin^2(2\theta_{13})<0.2$$

(90% C.L)

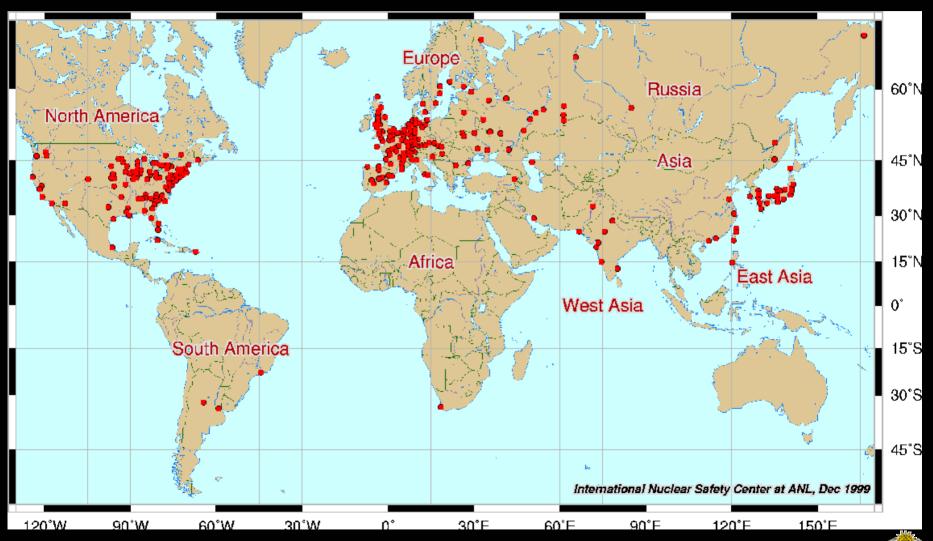
Improving CHOOZ is difficult ...

@CHOOZ: R = $1.01 \pm 2.8\%$ (stat) $\pm 2.7\%$ (syst)

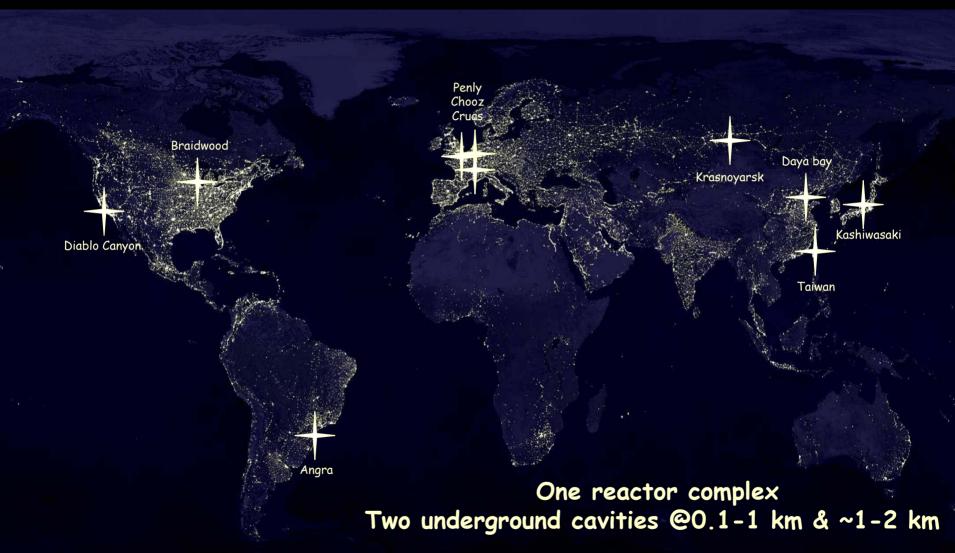
Statistics

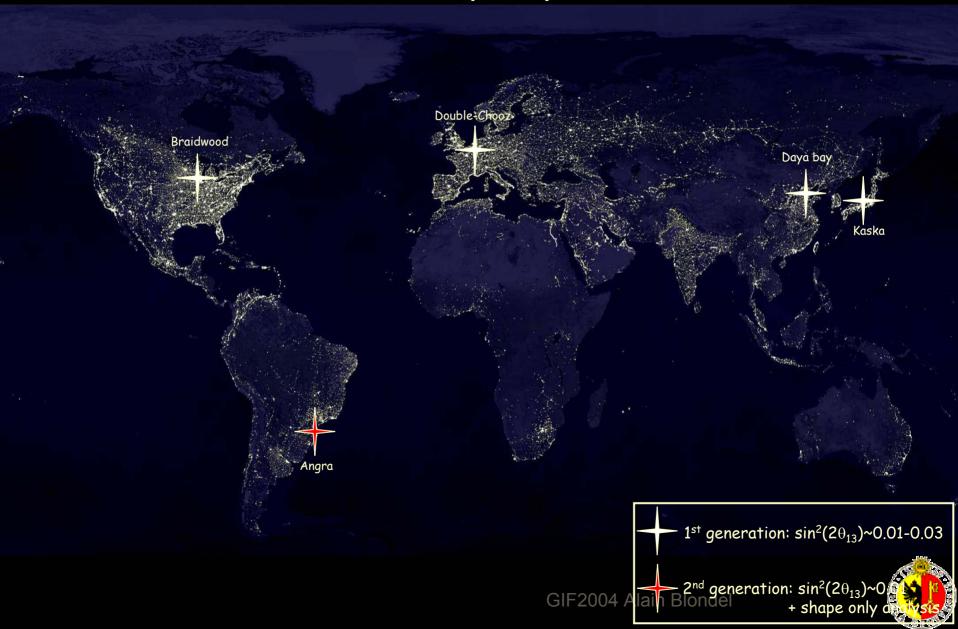
- ✓ Increase luminosity L = $\Delta t \times P(GW_{th}) \times N_p(target)$
- ✓ Increase fiducial volume & exposure
- \checkmark ~2700 events in CHOOZ but >40,000 for the next experiment $\rightarrow \sigma < 0.5\%$

Experimental error

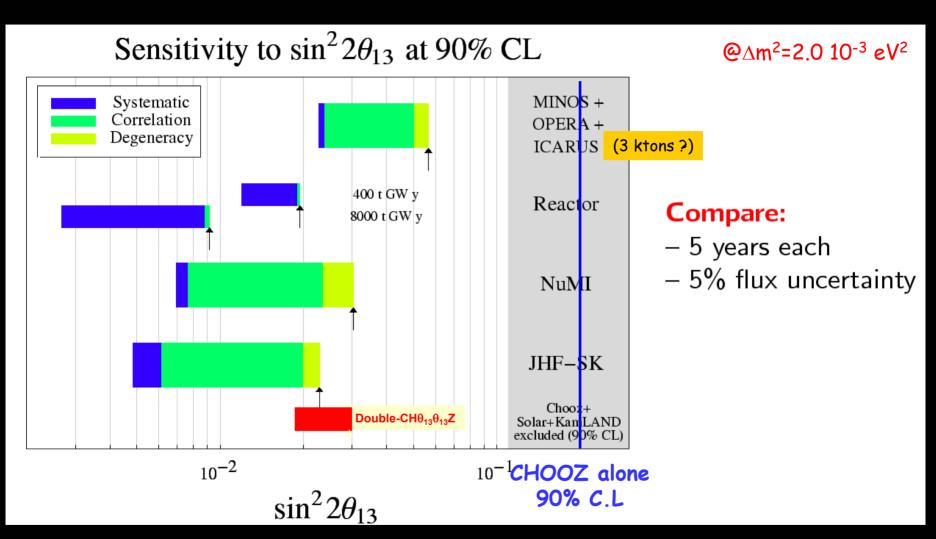

- ✓ 2 detectors → cancel neutrino flux and cross section syst. uncertainty [~2%]
- ✓ Identical detectors → decrease detector systematic uncertainties [<1%]
- ✓ Movable VS non movable detectors: cross calibration, but error might be increased?

Backgrounds (5/N~25 in CHOOZ; Goal 5/N >100 in the new experiment)

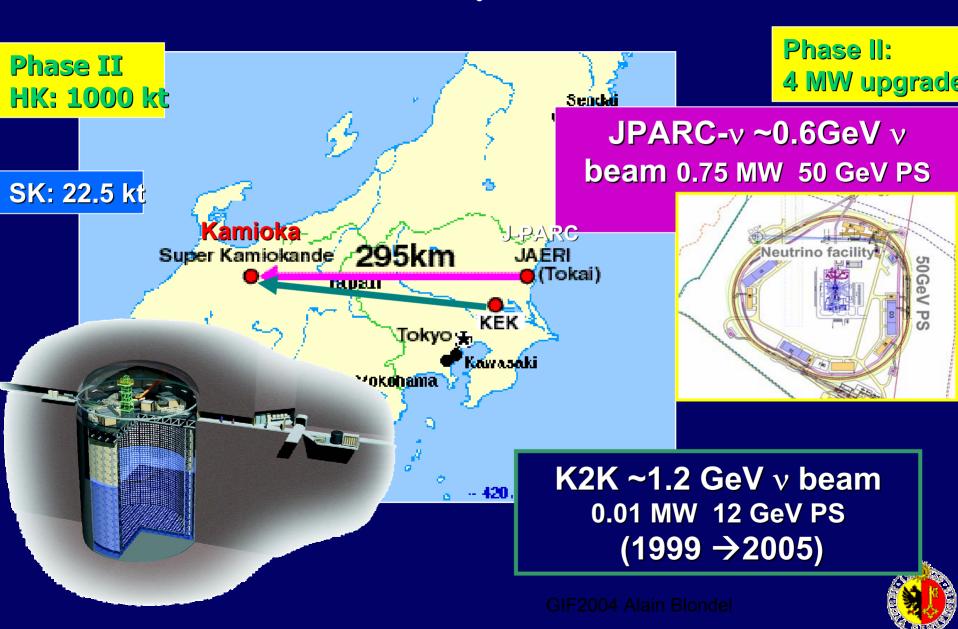

- \checkmark Uncorrelated background (meast in-situ) Correlated backgrounds (μ induced)
- ✓ Underground site required: >300 m.w.e for the far site to improve CHOOZ
- ✓ S/N equivalent for Near and Far detector (near detector could be shallower)
- \checkmark Reactor ON/OFF measurement \rightarrow 1, 2, 4, or up to 7 reactor cores?


Nuclear reactors in the world

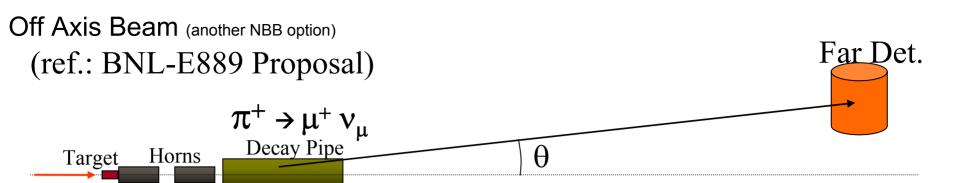

Which site for the experiment?


Current proposals

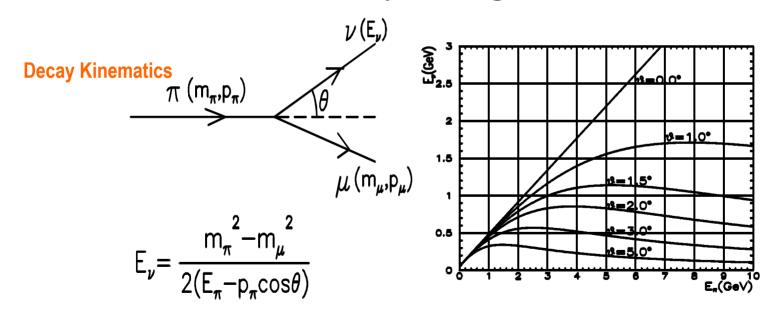
Double-Chooz (France)

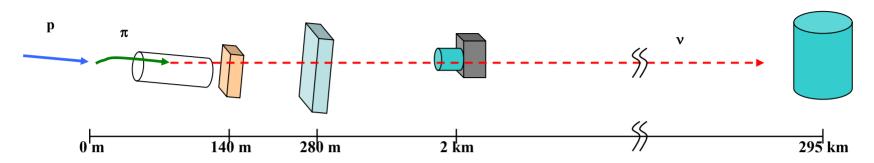


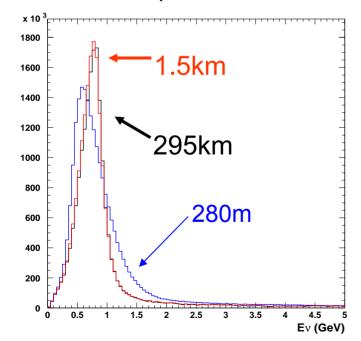
$sin^2(2\theta_{13})$ at LBL & reactors


Huber, Lindner, Schwetz & Winter ('extremum' of projection of the χ^2 manifold on the $\sin^2(2\theta_{13})$ axis)

T2K




WBB w/ intentionally misaligned beam line from det. axis


- **♦ Quasi Monochromatic Beam**
- ◆x2~3 intense than NBB
 GIF2004 Alain Blondel

The (J-PARC-v) T2K Beamline

Neutrino spectra at diff. dist

Problem with water Cerenkov: not very sensitive to details of interactions. Either 280 m or 2 km would be good locations for a very fine grained neutrino detector

> Need 10-50 tons fiducial or so @ 2km 200-500 kg fid @ 280m

The T2K experimental programme

Disappearance

- 1. improve measurement of Δm_{13}^2 (after MINOS, CNGS)
- 2. improve measurement of $\sin^2 2\theta_{12}$

These require good knowledge of

- -- flux shape
- -- absolute energy scale,
- -- experimental energy resolution.

Here the fact that the 2km flux is much similar to the SK flux than at 280 m is clearly an argument in favor of 2km detector location.

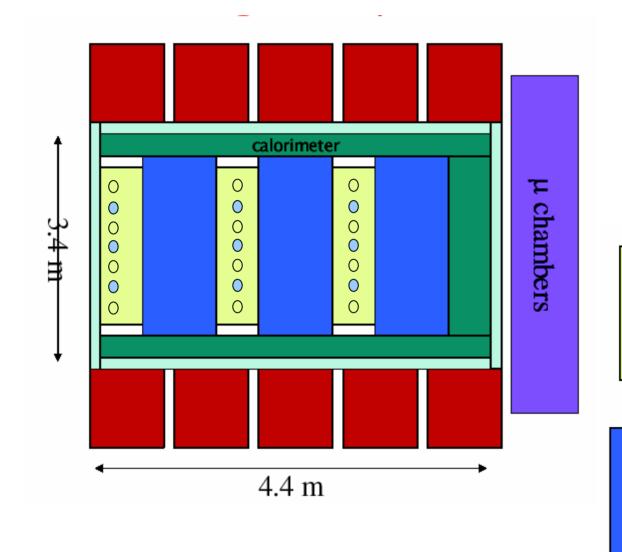
3. Appearance search for $v_{\mu} \leftrightarrow v_{e}$ oscillation $\Rightarrow \theta_{13}$

This is probably the highest priority measurement

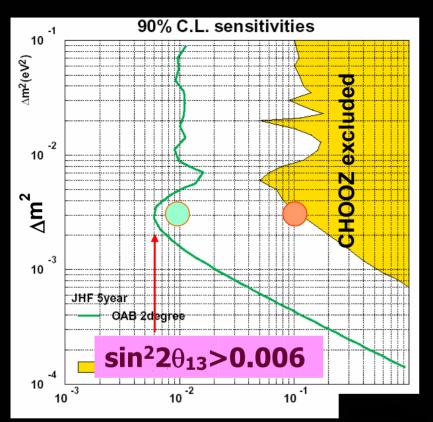
Appearance experiment. The main problem here is the understanding of the backgrounds from anything that produces or mimics an electromagnetic shower.

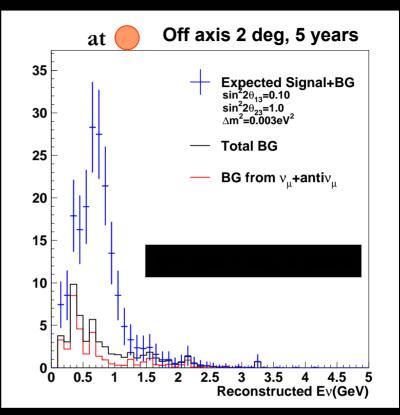
- beam v_e from K and mu decay
- π^{0}
- pions and secondary interactions etc...

The present 280 m detector concept


loverre, sanchez, radicioni

suggested detectors:

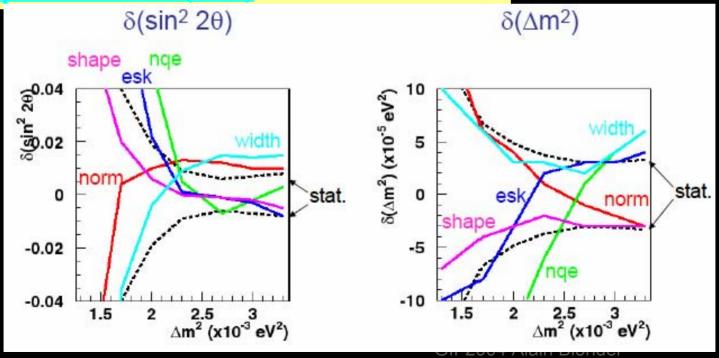

- o water targets
- o empty targets


Target -SCInt BARs 2.7×2.7 m² 45 cm thick pack 1 X0

Pack of tracking chambers 2.9×2.9 m²

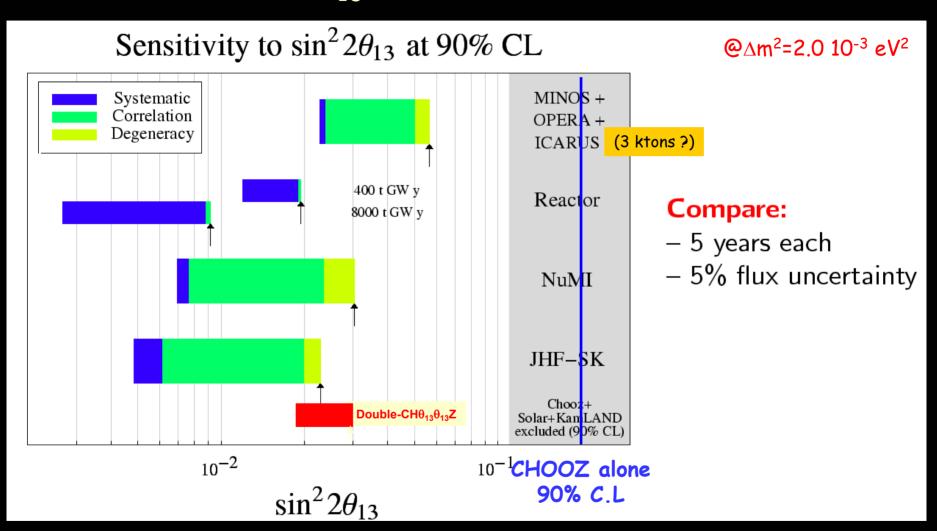
v_e appearance: θ_{13}

sin²20 ₁₃	Estimated background in Super-K					Sional	Cional .
	$($ NC $\pi^0)$	v _e beam	$\overline{\nu}_{\mu}$	- Ve	total	Signal (~40% eff.)	Signal + BG
0.1	12.0	10.7	1.7	0.5	24.9	114.6	139.5
0.01	12.0	10.7	1.7	0.5	24.9	11.5	36.4


Precision measurement of θ_{23} , Δm^2_{23} possible systematic errors and phase-1 stat.

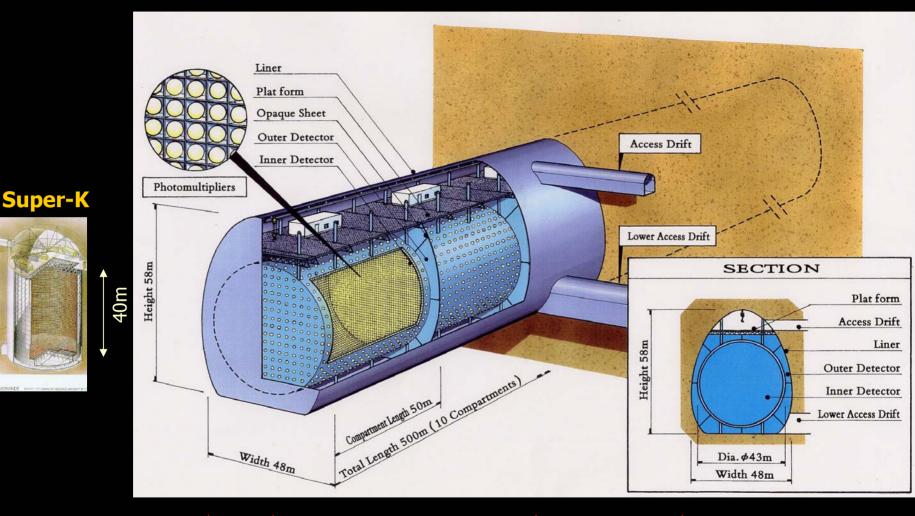
```
    Systematic errors
```

- normalization $(10\%.\rightarrow 5\%(K2K))$
- non-qe/qe ratio (20% (to be measured))
- E scale (4% (K2K 3%))
- Spectrum shape (Fluka/MARS →(Near D.))
- Spectrum width (10%)


OA2.5°

$$\delta(\sin^2 2\theta_{23}) \sim 0.01$$

 $\delta(\Delta m^2_{23}) < 1 \times 10^{-4} \text{ eV}^2$

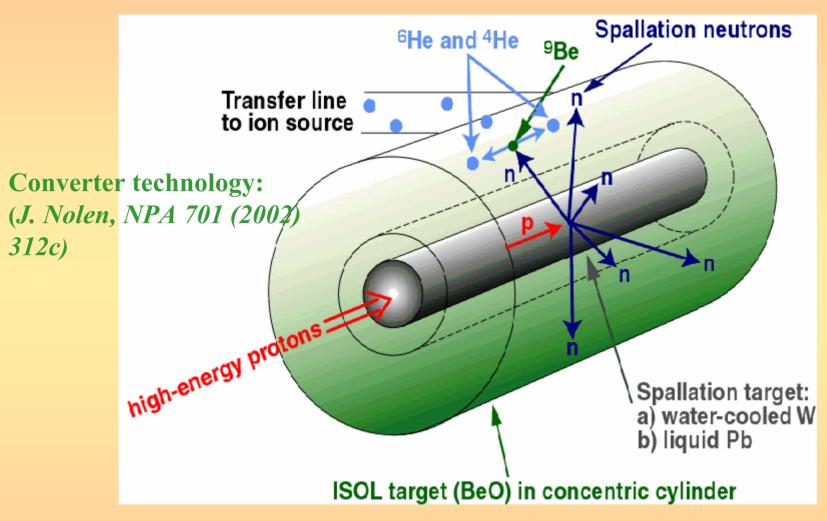

$sin^2(2\theta_{13})$ at LBL & reactors

Huber, Lindner, Schwetz & Winter ('extremum' of projection of the χ^2 manifold on the $\sin^2(2\theta_{13})$ axis)

Schematic drawing of Hyper-Kamiokande

1 Mton (fiducial) volume: Total Length 400m (8 Compartments)

Other major goal: improve proton decay reach Supernovae until Andromedes, etc...



Beta beam Challenges

- 1. Intense production of ions, in particular β^+ emitters (18Ne)
- 2. Clean acceleration: life time is much longer than muons but the decays produce activation in the rings
- 3. Stacking in the storage ring to ensure low duty cycle to distinguish beam events from atmospheric neutrinos

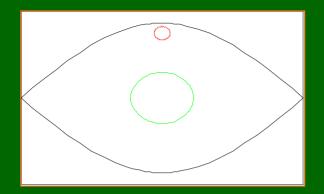
⁶He production by ⁹Be(n,a)

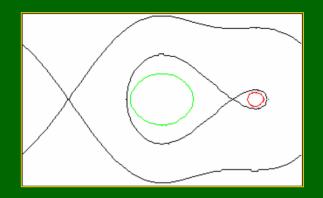
Layout very similar to planned EURISOL converter target aiming for 10¹⁵ fissions per s.

Production of β^+ emitters

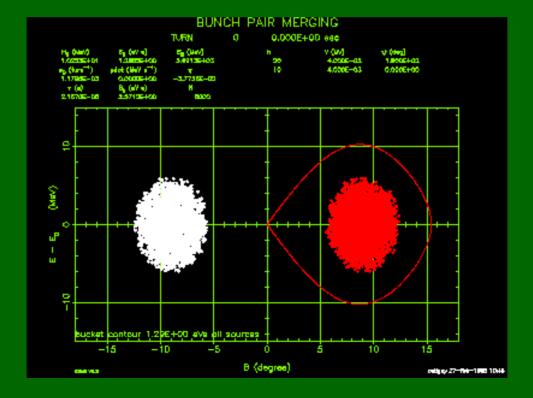
Spallation of close-by target nuclides:

^{18,19}Ne from MgO and ^{34,35}Ar in CaO


Production rate for 18 Ne is $1x10^{12}$ s⁻¹ (with 2.2 GeV 100 μ A proton beam, cross-sections of some mb and a 1 m long oxide target of 10% theoretical density)


¹⁹Ne can be produced with one order of magnitude higher intensity but the half life is 17 seconds!

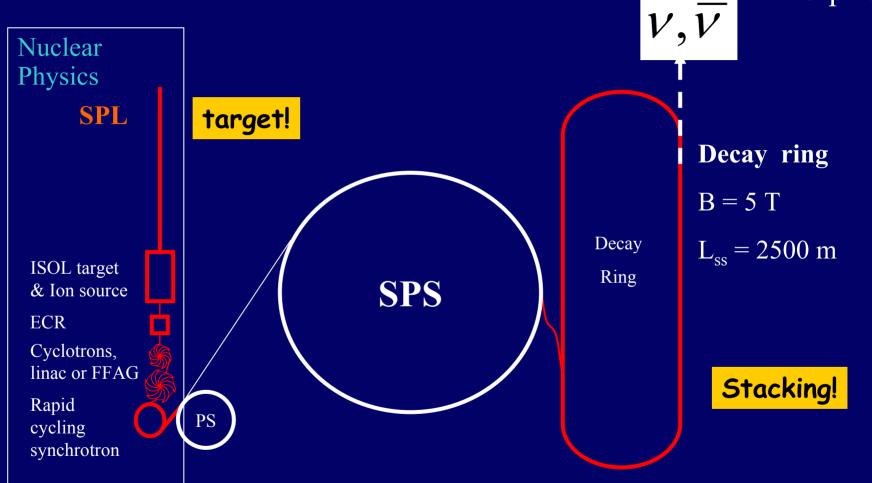
A PULSED souce could be realized by ECR (P.Sortais Moriond 2003)



STACKING is necessary to ensure duty cycle less than 10-3

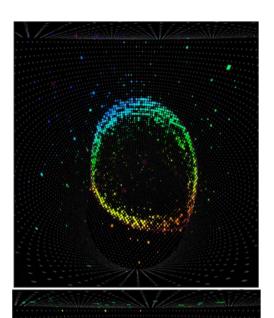
inject off energy (using e.g. dispersive section)

Going beyond...
Example: a series of facilities envisaged for CERN


CERN-SPL-based Neutrino SUPERBEAM

CERN: β-beam baseline scenario

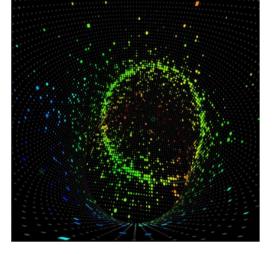
neutrinos of $E_{max} = \sim 600 MeV$


EU pride..

Same detectors as Superbeam!

Combination of beta beam with low energy super beam

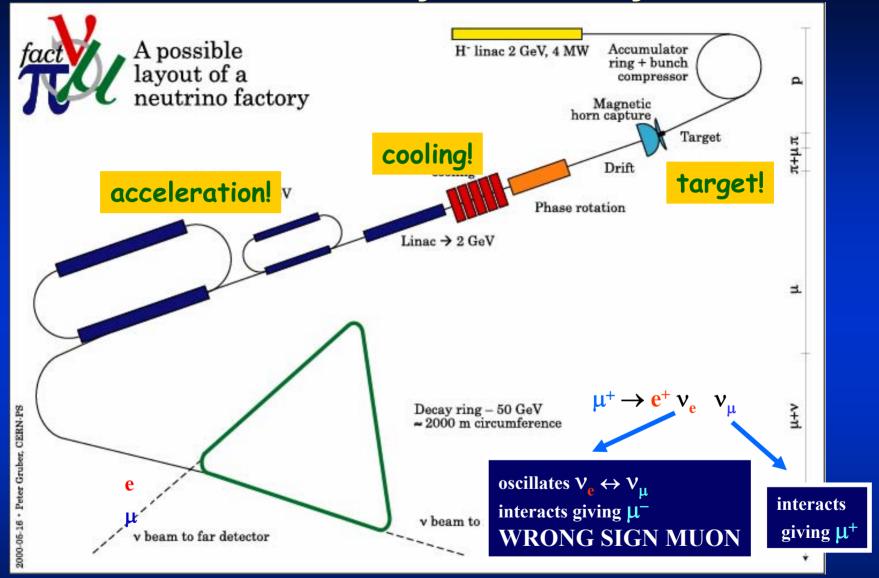
Unique to CERN:


need few 100 GeV accelerator (PS + SPS will do!) experience in radioactive beams at ISOLDE

many unknowns: what is the duty factor that can be achieved? (needs $< 10^{-3}$)

combines CP and T violation tests

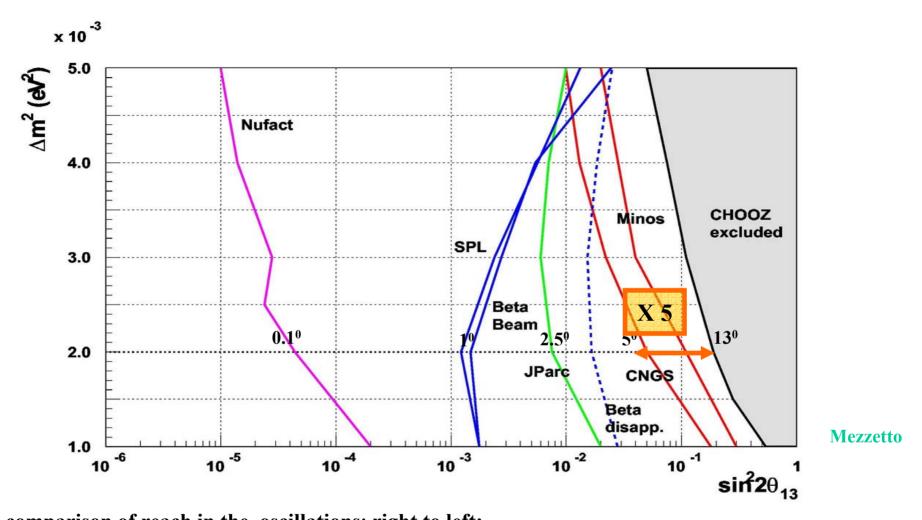
$$\nu_e \rightarrow \nu_\mu \quad (\beta+) \quad (T) \quad \nu_\mu \rightarrow \nu_e \quad (\pi^+)$$


(CP)

Can this work???? theoretical studies now on beta beam + SPL target and horn R&D → design study together with EURISOL

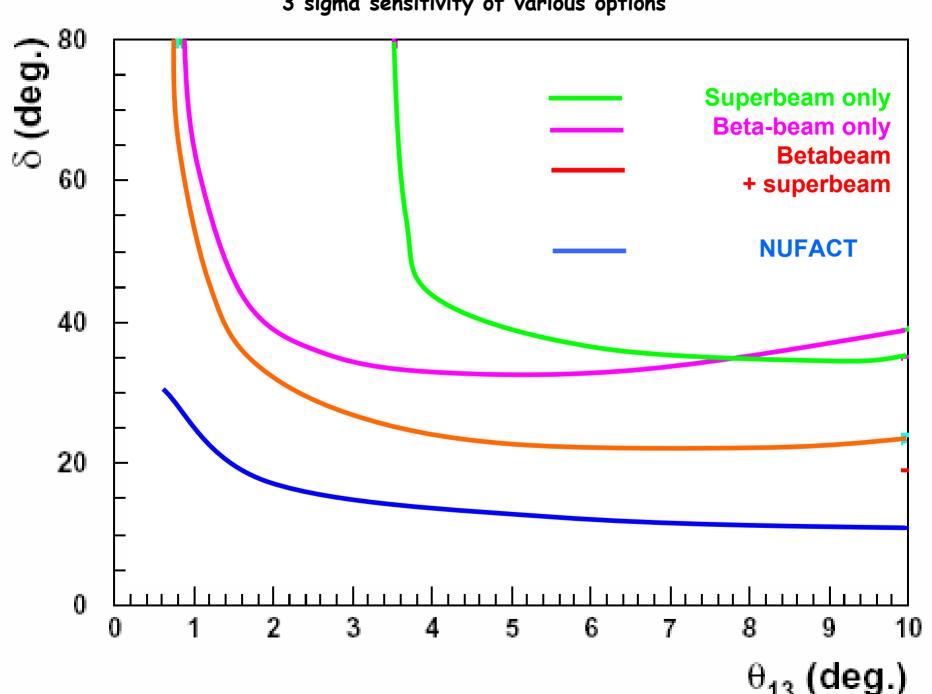
-- Neutrino Factory -- CERN layout --

MEASUREMENTS of V- FACTORY


$$\bar{\nu}_e \leftrightarrow \bar{\nu}_{\mu,\tau}$$

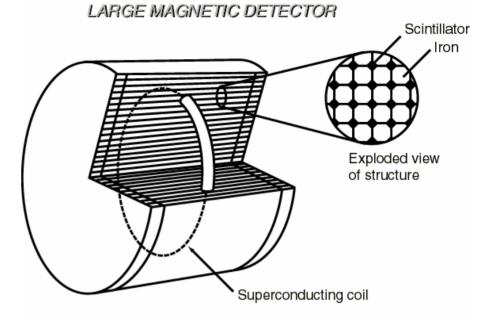
 $\bar{\nu}_e
ightarrow \bar{\nu}_\mu$ is the golden measurement at Nufact: appearance of wrong-sign muons

$$\mu^- \to \nu_\mu \quad \bar{\nu}_e \quad e^ \downarrow \quad \\ \bar{\nu}_\mu \quad \to \mu^+$$
 $\mu^+ \to \bar{\nu}_\mu \quad \nu_e \quad e^+$
 $\downarrow \quad \\ \nu_\mu \quad \to \mu^-$



Where will this get us...

comparison of reach in the oscillations; right to left:
present limit from the CHOOZ experiment,
expected sensitivity from the MINOS experiment, CNGS (OPERA+ICARUS)
0.75 MW JHF to super Kamiokande with an off-axis narrow-band beam,
Superbeam: 4 MW CERN-SPL to a 400 kton water Cerenkov in Fréjus (J-PARC phase II similar)
from a Neutrino Factory with 40 kton large magnetic detector.


3 sigma sensitivity of various options

Detector

- # Iron calorimeter
- **#** Magnetized
 - Charge discrimination

- # R = 10 m, L = 20 m
- # Fiducial mass = 40 kT

Dimension: radius 10 m, length 20 m Mass: 40 kt iron, 500 t scintillator

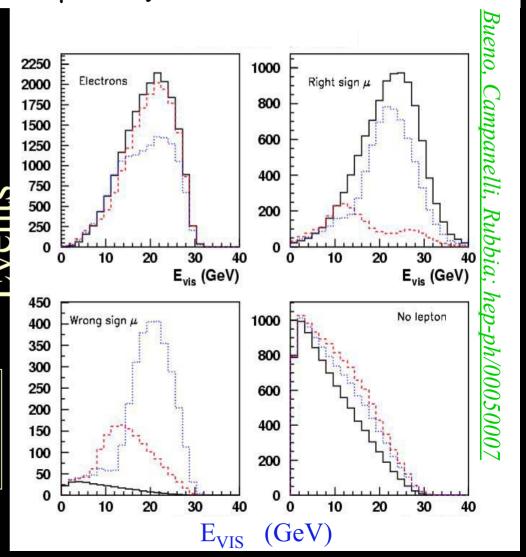
Also: L Arg detector: magnetized ICARUS Wrong sign muons, electrons, taus and NC evts

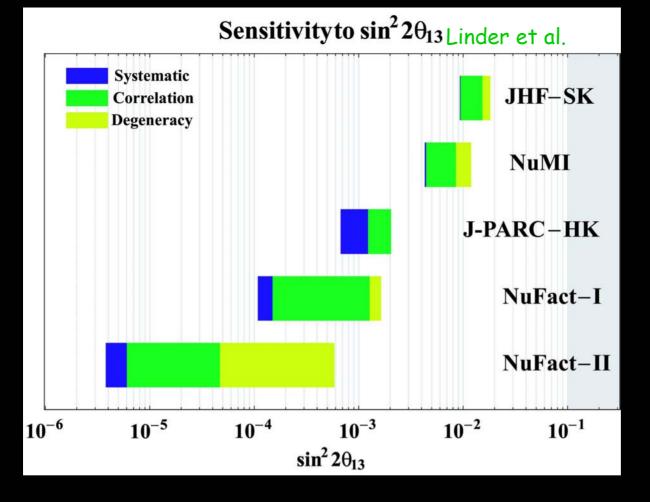
Events for 1 year

Baseline $\overline{\nu}_{\mu}$ CC ν_{e} CC ν_{μ} signal (sin² θ₁₃=0.01) 732 Km 3.5 x 10⁷ 5.9 x 10⁷ 1.1 x 10⁵ (J-PARC I→ SK = 40)

3500 Km 1.2 x 10⁶ 2.4 x 10⁶ 1.0 x 10⁵

GIF2004 Alain Blondel


Oscillation parameters can be extracted using energy distributions


- a) right-sign muons
- b) wrong-sign muons
- c) electrons/positrons
- d) positive τ -leptons
- e) negative τ -leptons
- f) no leptons

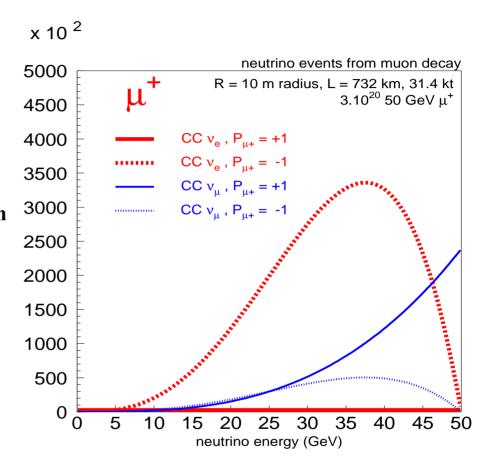
X2 (μ^+ stored and μ^- stored)

Note: $V_e \rightarrow V_\tau$ is specially important (Ambiguity resolution & Unitarity test): *Gomez-Cadenas et al.*

Simulated distributions for a 10kt LAr detector at L = 7400 km from a 30 GeV nu-factory with $10^{21} \, \mu^+$ decays.

Above plot obtained with Golden channel, one sign only and one distance. Emphasizes very low systematics, and degeneracies

Neutrino fluxes μ^+ -> $e^+ \nu_e \nu_\mu$


 ν_{μ}/ν_{e} ratio reversed by switching $\mu^{+\!/}\,\mu^{-}$ $\nu_{e}\,\nu_{\mu}$ spectra are different No high energy tail.

Very well known flux $(\pm 10^{-3})$

- $E\&\sigma_E$ calibration from muon spin precession
- -- angular divergence: small effect if $\theta < 0.2/\gamma$,
- from muon current or by $\nu_{\mu}\,e^- \to \mu^-\,\nu_{e}$ in near expt.
- -- in muon polarization precesses and averages out (preferred, -> calib of energy, energy spread)

Similar comments apply to beta beam, except spin 0

→ Energy and energy spread have to be obtained
from the properties of the storage ring
(Trajectories, RF volts and frequency, etc...)

 μ polarization controls ν_e flux:

μ -X > Ve

in forward direction

GIF2004 Alain Blondel

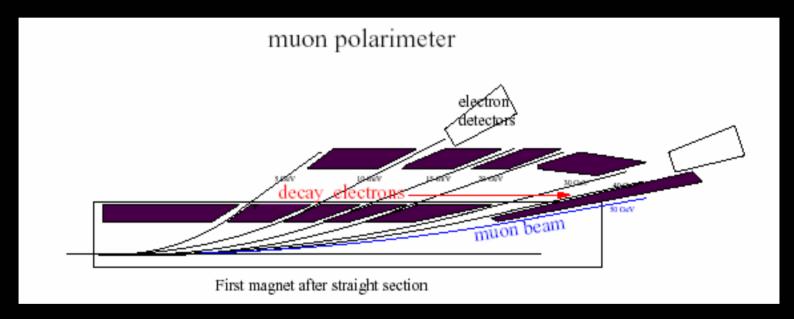
Muon Polarization

muons are born longitudinally polarized in pion decay (~18%) depolarization is small (Fernow & Gallardo)

effects in electric and magnetic fields is (mostly) described by spin tune:

$$\nu = a_{\mu} \gamma = \frac{g_{\mu} - 2}{2} \frac{E_{\text{beam}}}{m_{\mu}} = \frac{E_{\text{beam}}(\text{GeV})}{90.6223(6)}$$

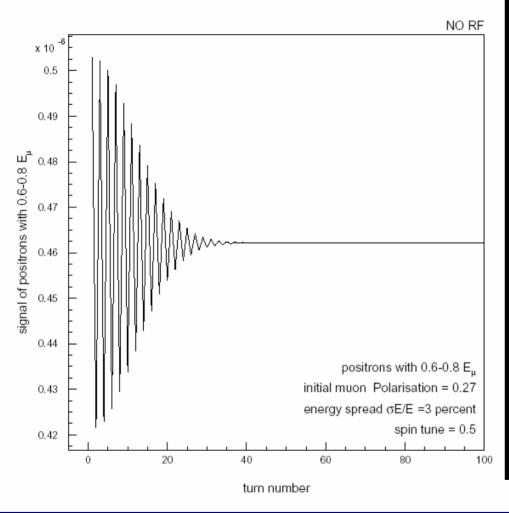
which is small: at each kick θ of a 200 MeV/c muon the polarization is kicked by $v.\theta = 0.002~\theta$


in the high energy storage ring polarization precesses. Interestingly v=0.5 for a beam energy of 45.3112 GeV: at that energy it flips at each turn. (NB This is roughly half the Z mass...!)

GIF2004 Alain Blondel

Muon Polarization

muon polarization is too small to be very useful for physics (AB, Campanelli) but it must be monitored.

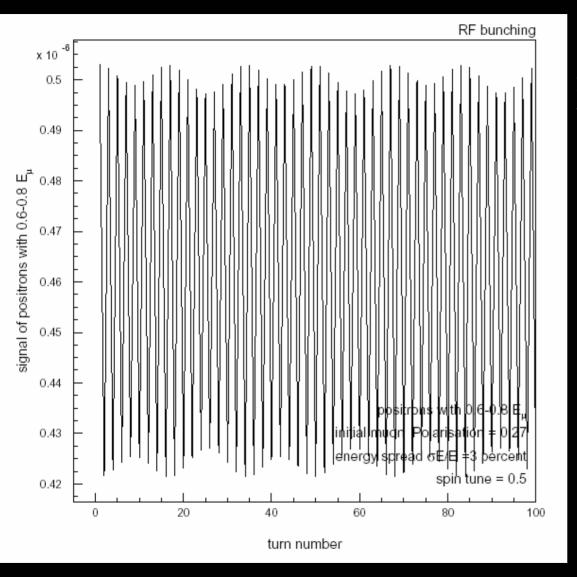

In addition it is precious for energy calibration (Raja&Tollestrup, AB)

a muon polarimeter would perform the momentum analysis of the decay electrons at the end of a straight section.

Because of parity violation in muon decay the ratio of high energy to low energy electrons is a good polarization monitor.

muon polarization

here is the ratio of
positons with E in [0.6-0.8] E
to number of muons in the ring.


There is no RF in the ring.

spin precession and depolarization are clearly visible This is the Fourier Transform of the muon energy spectrum (AB)

amplitude=> polarization frequency => energy decay => energy spread.

 $\rightarrow \Delta E/E$ and $\sigma E/E$ to 10^{-6}

polarization to a few percent

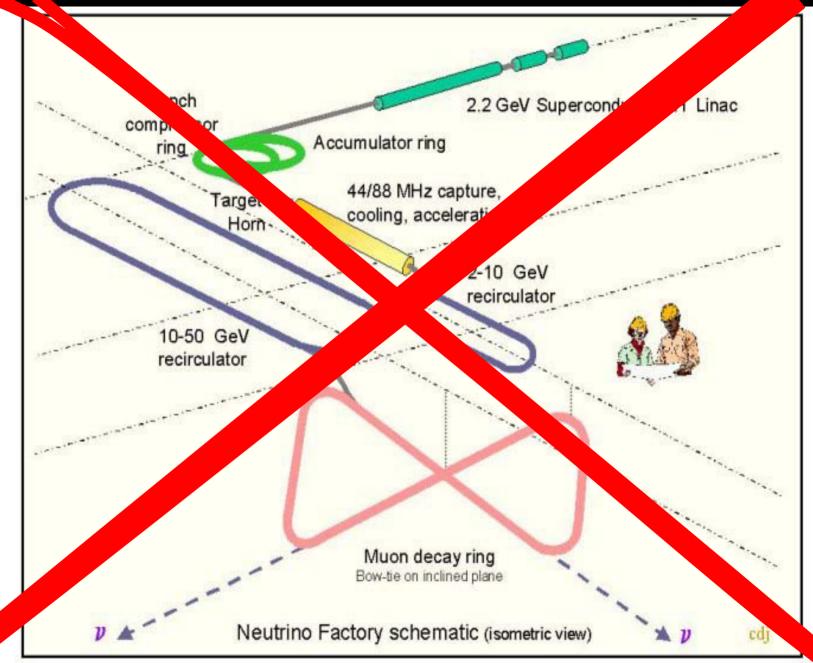
If there is RF in the storage ring to keep the muons bunched, depolarization is suppressed. (synchrotron oscillations)

Even in this case, the muon polarization, averaged over ~ 500 turns is very small ($<<0.18/500 = 410^{-4}$) and will be monitored.

muon polarization: triangle or bow-tie?

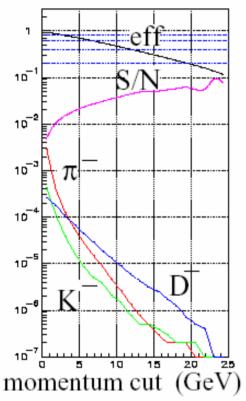
This was true for a race track or triangle decay ring, in which polarization precesses.

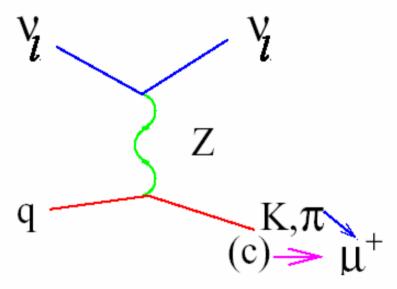
A bow-tie has been suggested to avoid this spin precession and depolarization (net bend is zero, so muon polarization does not precess either)


This has several inconvenients:

- -- P is different for the two straights (who shall be pleased?)
- -- P cannot be reversed
- -- E and $\sigma(E)$ can no longer be measured
- -- in order to know the flux to 0.1% on must know P to 0.1% and this is hard!

end of the bow tie.




CERN baseline scenario

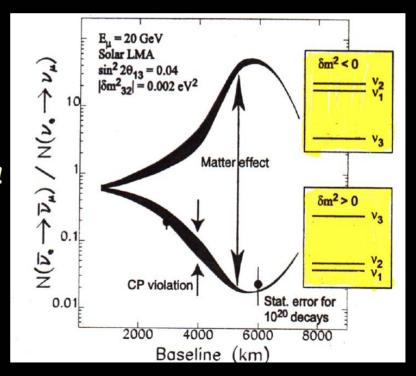
Very small systematics in neutirno factory come from low background

• Backgrounds at $\leq 10^{-4}$ level, not few $\times 10^{-3}$

Momentum cut on muon easily removes backgrounds

Cervera et al, Nucl.Phys.**B579** 17,2000

to be investigated: the lowest possible momentum cut for specific events (Quasi-elastics)

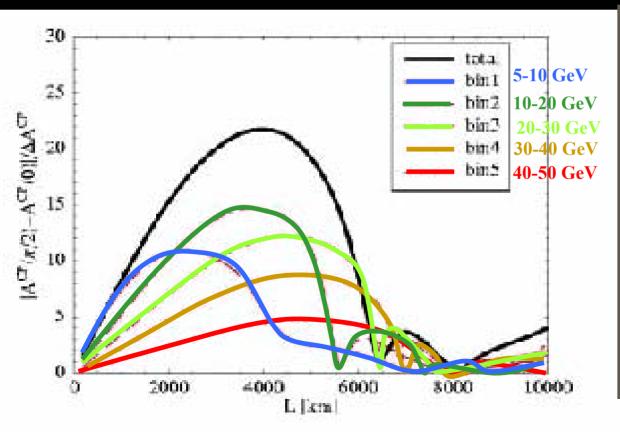

CP asymmetries compare $v_e \rightarrow v_\mu$ to $\overline{v}_e \rightarrow \overline{v}_\mu$ probabilities

$$P_{\nu_e\nu_\mu(\bar{\nu}_e\bar{\nu}_\mu)} \ = \ \sin^2\theta_{23}\sin^22\,\theta_{13}\left(\frac{\Delta m_{23}^2}{B_\pm}\right)^2 \ \sin^2B_\pm L$$
 with $B_\pm \equiv \sqrt{(\Delta m_{23}^2\cos2\,\theta_{13}\pm\mu)^2 + (\Delta m_{23}^2\sin2\,\theta_{13})^2}$

μ is prop. to matter density, positive for neutrinos, negative for antineutrinos

HUGE effect for distance around 6000 km!!
Resonance around 12 GeV when

 $\Delta m^2_{23}\cos 2\theta_{13} \pm \mu = 0$



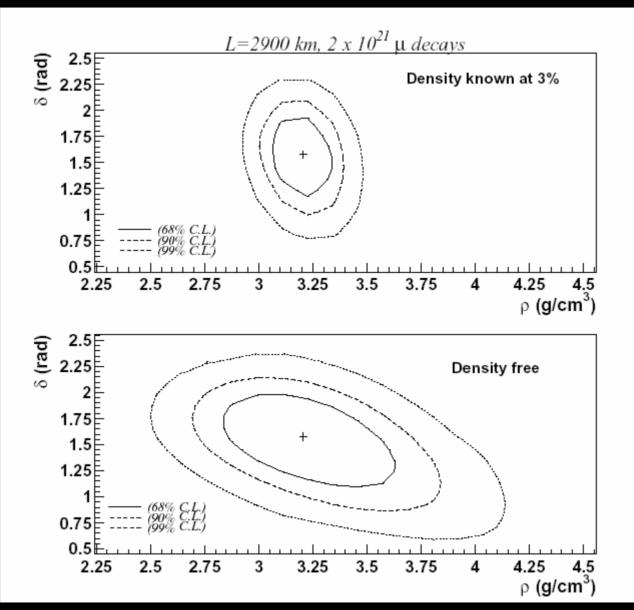
CP violation (ctd)

Matter effect must be subtracted. One believes this can be done with uncertainty Of order 2%. Also spectrum of matter effect and CP violation is different

- ⇒It is important to subtract in bins of measured energy.
- ⇒knowledge of spectrum is essential here!

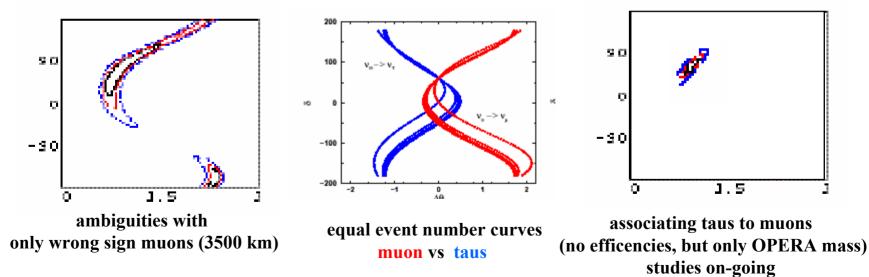
40 kton L M D 50 GeV nufact 5 yrs 10²¹μ/yr

In fact, 20-30 GeV Is enough!


Best distance is 2500-3500 km

e.g. Fermilab or BNL -> west coast or ...

Bueno, Campanelli, Rubbia hep-ph/0005-007


Silver channel at neutrino factory

hep-ph/0206034 ROMA-1336/02

High energy neutrinos at NuFact allow observation of $V_e \rightarrow V_{\tau}$ (wrong sign muons with missing energy and P⊥). UNIQUE

Liquid Argon or OPERA-like detector at 3000 km.

Since the $\sin\delta$ dependence has opposite sign with the wrong sign muons, this solves ambiguities that will invariably appear if only wrong sign muons are used.

The Eightfold Degeneracy in (θ₁₃, δ) Measure (Barger01, Burguet02)

e.g. Rigolin, Donini, Meloni

$$N_i^{\pm}(\bar{\theta}_{13}, \bar{\delta}; \bar{s}_{atm}, \bar{s}_{oct}) = N_i^{\pm}(\theta_{13}, \delta; s_{atm}, s_{oct})$$

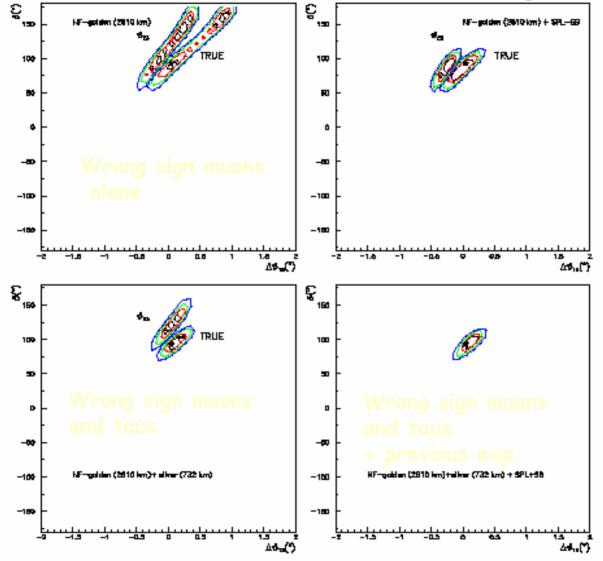
One has to solve ALL the following systems of equations:

intrinsic ambiguity

$$N_i^{\pm}(\bar{\theta}_{13}, \bar{\delta}; \bar{s}_{atm}, \bar{s}_{oct}) = N_i^{\pm}(\theta_{13}, \delta; s_{atm} = \bar{s}_{atm}, s_{oct} = \bar{s}_{oct})$$

sign ambiguity

$$N_i^{\pm}(\bar{\theta}_{13}, \bar{\delta}; \bar{s}_{atm}, \bar{s}_{oct}) = N_i^{\pm}(\underline{\theta_{13}}, \underline{\delta}; s_{atm} = -\bar{s}_{atm}, s_{oct} = \bar{s}_{oct})$$

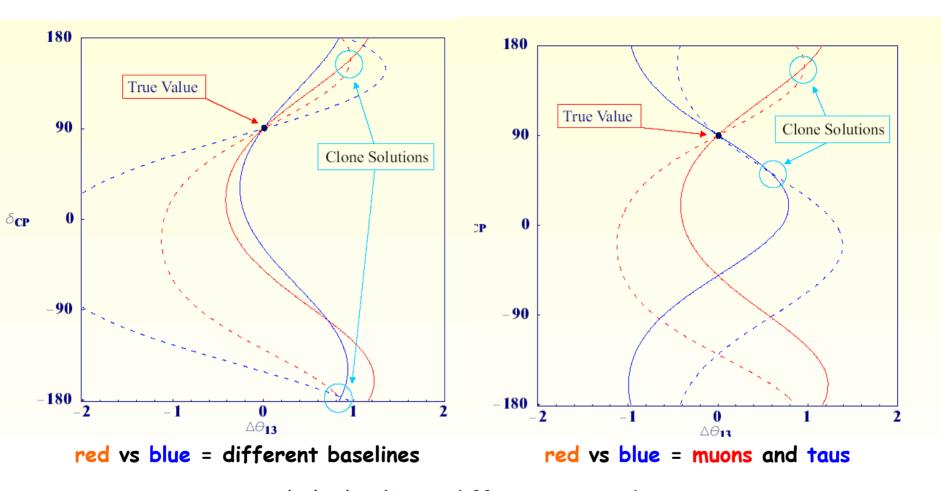

octant ambiguity

$$N_i^{\pm}(\bar{\theta}_{13}, \bar{\delta}; \bar{s}_{atm}, \bar{s}_{oct}) = N_i^{\pm}(\underline{\theta_{13}}, \underline{\delta}; s_{atm} = \bar{s}_{atm}, s_{oct} = -\bar{s}_{oct})$$

mixed ambiguity

$$N_i^{\pm}(\bar{\theta}_{13},\bar{\delta};\bar{s}_{atm},\bar{s}_{oct}) = N_i^{\pm}(\underline{\theta_{13}},\underline{\delta};s_{atm} = -\bar{s}_{atm},s_{oct} = -\bar{s}_{oct})$$

From Donini, NuFact03: There were even ambiguities with the neutrino factory:



Getting to ultimate precision means combining data from several channels:

- Wrong-sign muons
- $\nu_e \rightarrow \nu_\tau$
- Conventional Beams

hep-ph/0310014

dashed vs <u>line</u> = different energy bin (most powerful is around matter resonance @ ~12 GeV)

Conclusion:

Neutrino Factory has many handles on the problem (muon sign + Gold + Silver + different baselines + binning in energy) thanks to high energy!

"It could in principle solve many of the clones for θ_{13} down to 1° The most difficult one is the octant clone which will require a dedicated analysis" (Rigolin)

Fermilab Proton Driver 8 GeV Superconducting Linac

Basic concept inspired by the observation (by Bill Foster) that \$/GeV for SCRF has fallen dramatically

⇒ Consider a solution in which H- beam is accelerated to 8 GeV in a superconducting linac and injected directly into the Main Injector

Attractions of a superconducting linac:

Many components exist (few parts to design vs. new synchrotron) Copy SNS, RIA, & AccSys Linac up to 1.2 GeV "TESLA" Cryo modules from 1.2 -> 8 GeV

Smaller emittance than a synchrotron

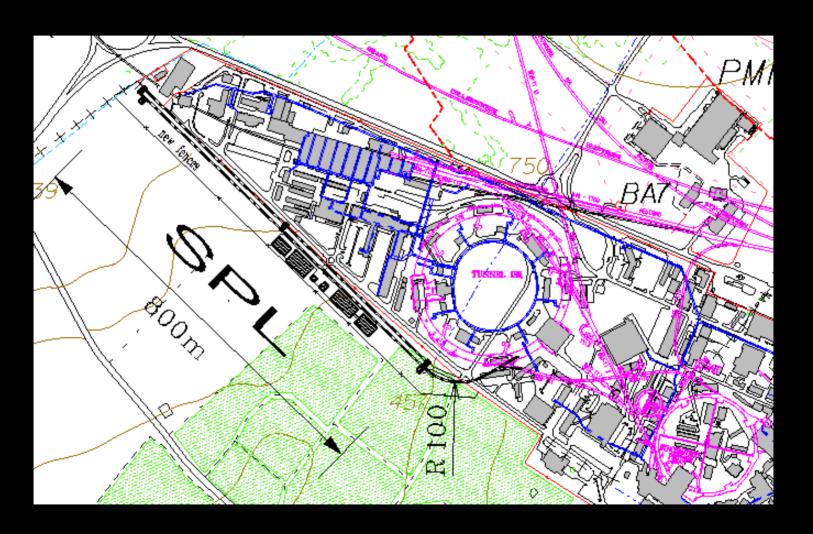
High beam power simultaneously at 8 & 120 GeV

Plus, high beam power (2 MW) over entire 40-120 GeV range

Flexibility for the future

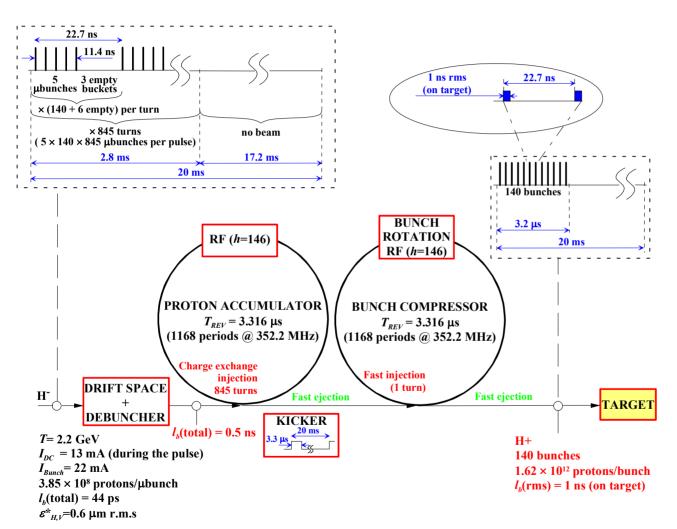
Issues:

Uncontrolled H- stripping Halo formation and control Cost



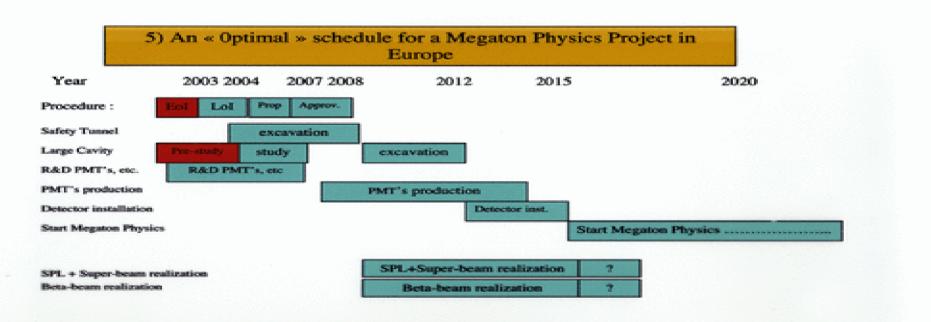
Fermilab Proton Driver

8 GeV SC Linac: Other possible missions (from the mind of Bill Foster)



SPL layout

Accumulator and Compressor



n 4	X7 1	TT •4
Parameter	Value	Unit
Mean beam	4	MW
power		
Kinetic energy	2.2	GeV
Repetiton rate	50	Hz
Pulse duration	3.3	μs
Number of	140	
bunches		
Pulse intensity	2.27	p/pulse
	×10 ¹⁴	
Bunch spacing	22.7	ns
(Bunch frequency)	(44)	(MHz)
Bunch length (σ)	1	ns
Relative	5×10 ⁻³	
momentum spread		
(σ)		
Norm. horizontal	50	μm.rad
emittance (σ)		

The proposed SPL Roadmap SPL Linac 4 (Garoby, Vretenar) approval approv al 2004 2006 2010 2012 2013 Task Name 2005 2008 2009 2011 2014 2015 LINAC4 LHC Design refinment Construction upgrade Commissioning 12/31 Start operation with PSB SPL Design refinment Construction Linac4 displacement + commissioning 12/30 Start operation as PS Injector

18

High intensity proton accelerators pose many challenges but certainly one of the most critical one is the

Target!

Typical Dimensions: $L \approx 30$ cm, $R \approx 1$ cm

→ 4 MW of protons (i.e. 40 000 light bulbs!) into a big cigar....

it would immediately go to smoke.

Liquid Mercury Target R&D

Experiment @BNL and @CERN

Speed of Hg disruption

Max $v_{\perp} \approx 20$ m/s measured $v_{//} \approx 3$ m/s

(design calls for 20m/s)

E951 Mercury run 4-25-2001

file #: jet-data-10-movie.gif

grid size: 1 cm

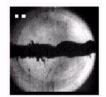
field of view: 13.2 cm x 13.2 cm

frame rate: 1 ms

exposure time: 150 ns

proton energy: 24 GeV # of particles: 3.8 TP

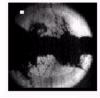
jet remains intact for more than 20 microseconds.



Target: Hg jet tests

E951

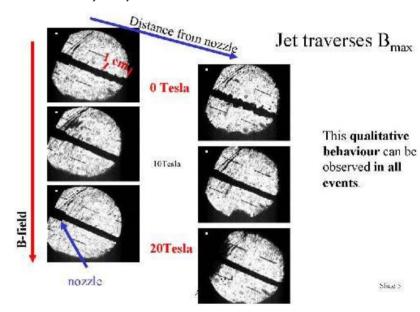
- •1 cm
- •v=2.5 cm/s
- •24 GeV 4 TP p beam
- No B field



t = 0 ms

t = 0.75 ms

t = 2 ms t = 7 ms


t = 18 ms

Hg jet dispersal properties:

- proportional to beam intensity
- velocities ~½ times that of "confined thimble" target
- largely transverse to the jet axis
- delayed 40 ms

CERN/Grenoble

- •4 mm
- •v=12 m/s
- No p beam
- •0,10,20T B field

- The Hg jet is stabilized by the 20 T B field
- Minimal jet deflection for 100 mrad angle of entry
- Jet velocity reduced upon entry to B field

GIF2004 Alain Blondel

Target & collection

Barch
Compressor
Accoundator ring
H Linse

4488 MHz capture,
rolling, scederation
2-10 GeV
recervabler

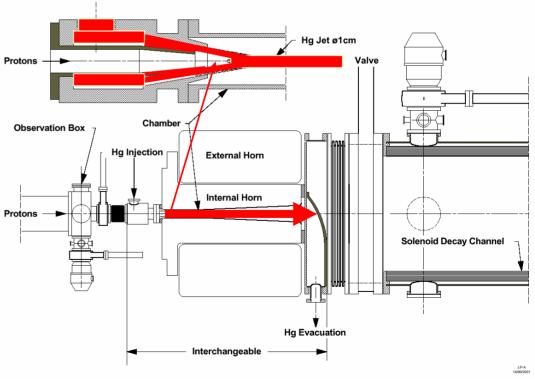
Nesterino Factory
schematic
(somutite view)

Muon decay ring
Trengt on on
include place
include place

Note the scene of t

Achieve intense muon beams by maximizing production of π + and π -

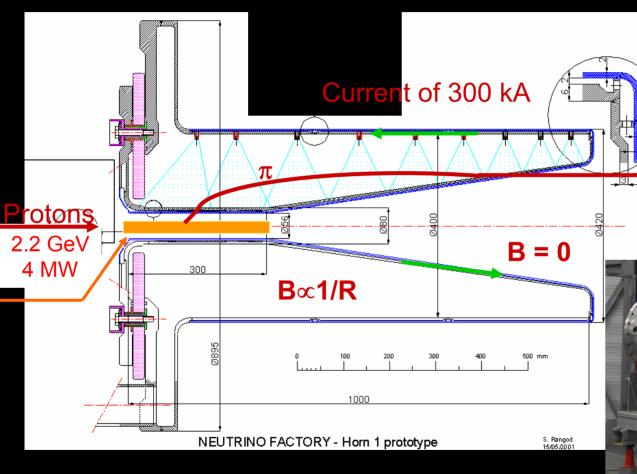
Soft pion production


HARP cross-section results awaited!

High Z material High magnetic field Sustain high power

Superbeam or Neutrino Fact Targetry concept:

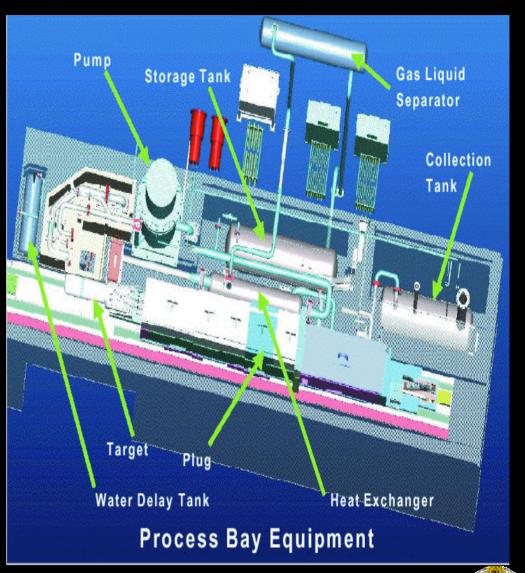
Hg jet p-converter target Pion focusing horn



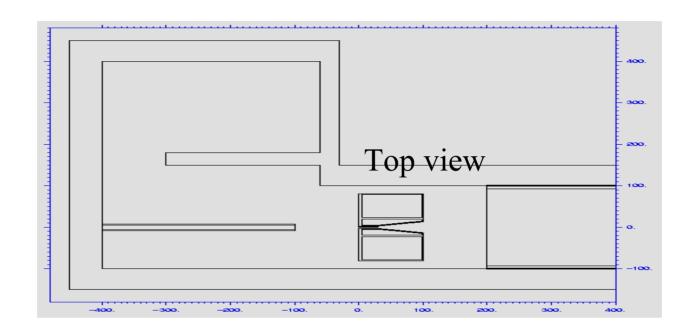
Target & collection

District Compressor Accommissor ring 4488 MHz capture, crollag, acceleration 2-10 GeV recordator 10-50 GeV recordator Neutrino Factory schematic (inountic vine) Mont docty ring Transfe on m inclined flose

The CERN magnetic horn for pion collection


Prototype built at CERN

Hg-jet system

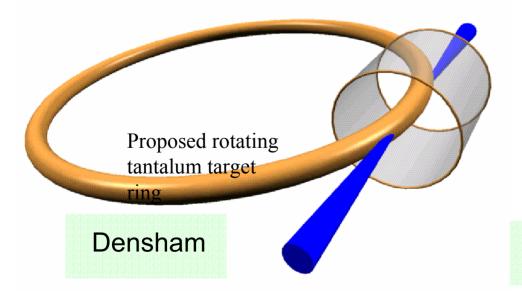

Power absorbed in Hg-jet	1 MW
Operating pressure	100 Bar
Flow rate	2 t/m
Jet speed	30 m/s
Jet diameter	10 mm
Temperature	
- Inlet to target	
30° <i>C</i>	
 Exit from target 	100° C
Total Hg inventory	10 t

Pump power

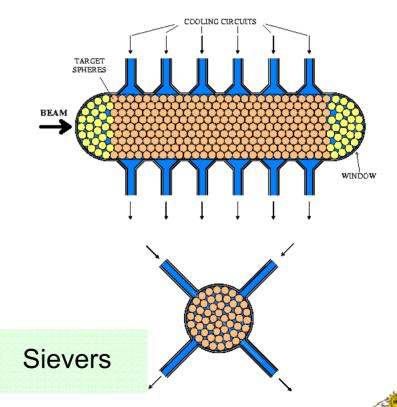
50 kW

The target station

The facility consists of a target, two horns and a decay tunnel. It is shielded by 50 cm thick walls of concrete and is embedded in the rock.



Targetry


Many difficulties: enormous power density ⇒ lifetime problems pion capture

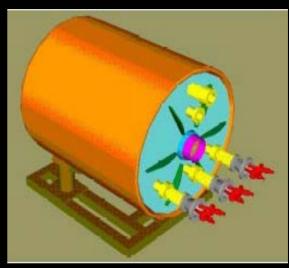
Replace target between bunches:

Liquid mercury jet or rotating solid target

Stationary target:

Target & collection

Proposal to test a 10m/s Hg Jet in a 15T Solenoid with an Intense Proton Beam

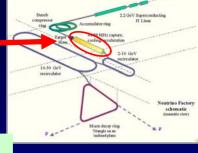

CERN-INTC-2003-033 INTC-I-049 26 April 2004

A Proposal to the ISOLDE and Neutron Time-of-Flight Experiments Committee

Studies of a Target System for a 4-MW, 24-GeV Proton Beam

J. Roger J. Bennett¹, Luca Bruno², Chris J. Densham¹, Paul V. Drumm¹, T. Robert Edgecock¹, Tony A. Gabriel³, John R. Haines³, Helmut Haseroth², Yoshinari Hayato⁴, Steven J. Kahn⁵, Jacques Lettry², Changguo Lu⁶, Hans Ludewig⁵, Harold G. Kirk⁵, Kirk T. McDonald⁶, Robert B. Palmer⁵, Yarema Prykarpatskyy⁵, Nicholas Simos⁵, Roman V. Samulyak⁵, Peter H. Thieberger⁵, Koji Yoshimura⁴

> Spokespersons: H.G. Kirk, K.T. McDonald Local Contact: H. Haseroth


Participating Institutions

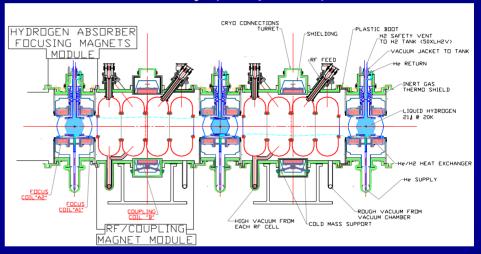
- 1) RAL
- 2) CERN
- 3) KEK
- 4) BNL
- 5) ORNL
- 6) Princeton University

aim:

Installation and commissioning at CERN by April 2006

Muon ionization cooling

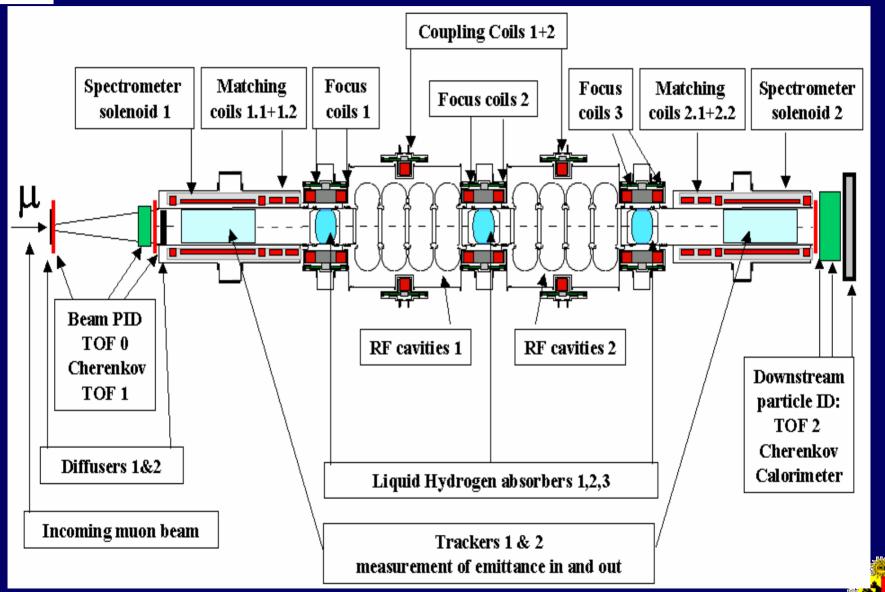
A novel method for μ + and μ - is needed: ionization cooling

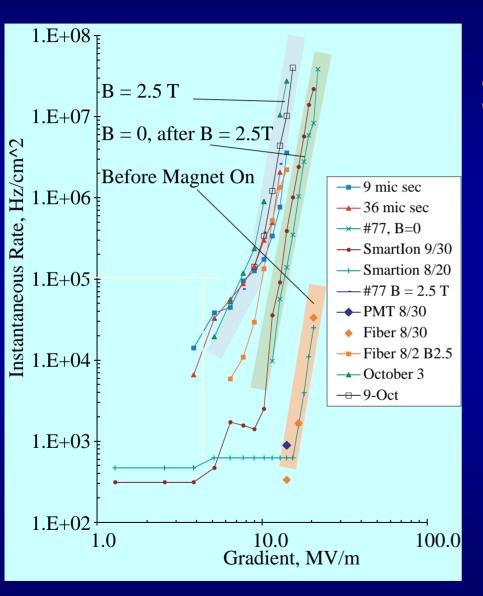

principle

dE/dxmultiple scattering re-acceleration

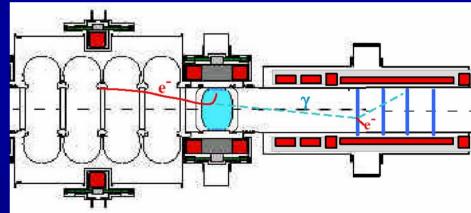
reduce p_t and p_l with as little heating as possible:
Hydrogen!

increase p_l
fast
acceleration


reality (simplified)


Never realized in practice!
A realistic prototype should be built and proven to be adequate to the Neutrino Factory requirements.

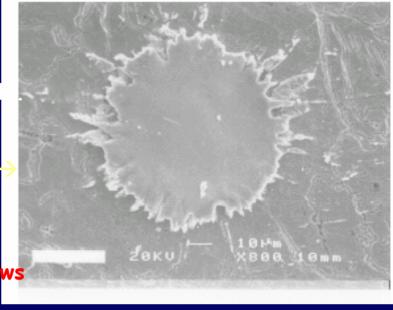
MICE setup: cooling + diagnostics



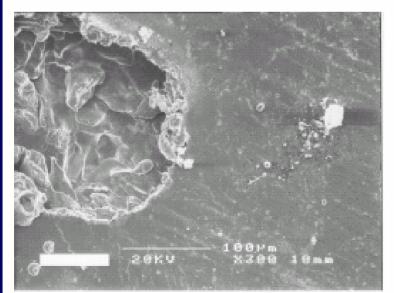
Operation of RF cavities at high gradient in magnetic field

Dark current backgrounds measured on a 805 MHz cavity in magnetic field! with a 1mm scintillating fiber at d=O(1m)

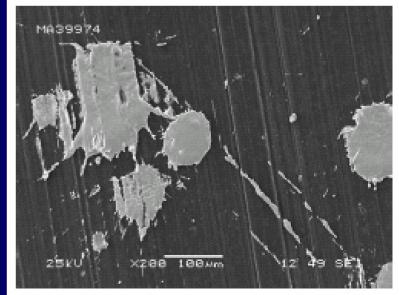
This will be also a source of backgrounds for MICE:



RF cavity (800 MHz) at Fermilab being pushed to its limits (35 MV/m) to study dark current emission in magnetic field. Sees clear enhancement due to B fiel Various diagnostics methods photographic paper, scintillating fibers Microscope -----


BCT and solid state counters have demonstrated this and allowed precise measurements

Real cavities will be equipped with Be windows which do not show sign of being pitted contrary to Cu



Pillbox cavity: Cu plate

Copper windows were pitted.

Cu splashes on the Be window.

MICE cooling channel R&D

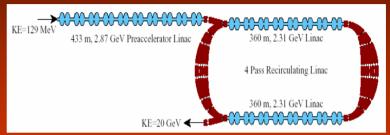
The challenge: Thin windows + safety regulations

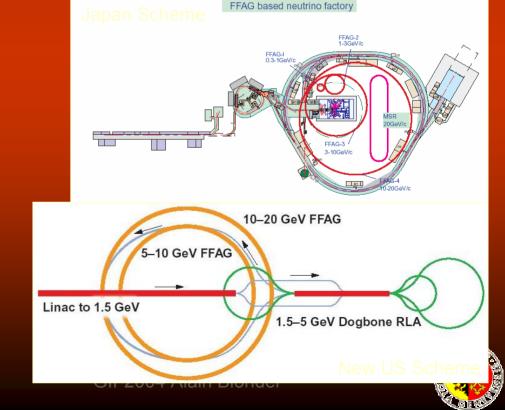
RF module (Berkeley, Los Alamos, CERN, RAL)

First cavity

Be window to minimize thickness

Muon acceleration




Previous accelerator scheme:
LINAC + Recirculating Linear
Accelerator (RLA)
Very costly and rigid use.

Proposed solution:

Fixed Field Alternating
Gradient (FFAG). a new
type of accelerator with Bfield shaped as r^k

-->particles can be kept and accelerated over a range of energies of ~factor 3.

Muon acceleration: FFAG

Much progress in Japan with the development and demonstration of large acceptance FFAG accelerators

Latest ideas in US have lead to the invention of a new type of FFAG ("non-scaling FFAG")

interesting for more than just Neutrino Factories (e.g. from SPL to 20 GeV?)

require a demonstration experiment (PRISM, electron prototype)

Perhaps US & Japanese concepts are merging to produce something better ??

\$\$\$\$\$... COST ... \$\$\$\$\$

USA, Europe, Japan have each their scheme for Nu-Fact.

Only one has been costed, US 'study II' and estimated (2001) ~2B\$.

The aim of the R&D is also to understand if solutions could reduce cost in half.

System	Sum	${ m Others}^a$	Total	${f Reconciliation}^b$
	(\$M)	(\$M)	$(\$\mathrm{M})$	(FY00 \$M)
Proton Driver	167.6	16.8	184.4	179.9
Target Systems	91.6	9.2	100.8	98.3
Decay Channel	4.6	0.5	5.1	5.0
Induction Linacs	319.1	31.9	351.0	342.4
Bunching	68.6	6.9	75.5	73.6
Cooling Channel	317.0	31.7	348.7	340.2
Pre-accel. linac	188.9	18.9	207.8	202.7
RLA	355.5	35.5	391.0	381.5
Storage Ring	107.4	10.7	118.1	115.2
Site Utilities	126.9	12.7	139.6	136.2
Totals + detect	$1,747.2^{\circ}$	S *174.8 <mark>b</mark>	<mark>01,922.01</mark>	or MS 1,875.0

Neutrino Factory CAN be done.....but it is too expensive as is.

Aim of R&D: ascertain challenges can be met + cut cost in half.

\$\$\$\$\$... COST ... \$\$\$\$\$

Why we are optimistic:

37 Th 10 Th	Study 2	Now	Factor
PHASE ROTATION			
Beam Line (m)	328	166	51 %
Acceleration (m)	269	35	13 %
Acc Type	Induction	Warm RF	
COOLING			
Beam Line (m)	108	51	47 %
Acceleration (m)	74	34	46 %
Absorbers	Liquid Hydrogen	Solid Li or LiH	
ACCELERATION		**	
Beam Line (m)	3261	pprox 700	$\approx 21~\%$
Tun Length	1494	pprox 700	$\approx 47~\%$
Acc Length	288	pprox 130	$\approx 45~\%$

In the previous design $\sim \frac{3}{4}$ of the cost came from these 3 equally expensive sub-systems.

New design has similar performance to Study 2 performance and keeps both μ^+ and μ^- ! (RF phase rotation)

NUFACT 2004: cost can be reduced by at least 1/3

= proton driver + 1 B €

MAYBE the Neutrino Factory is not so far in the future after all....

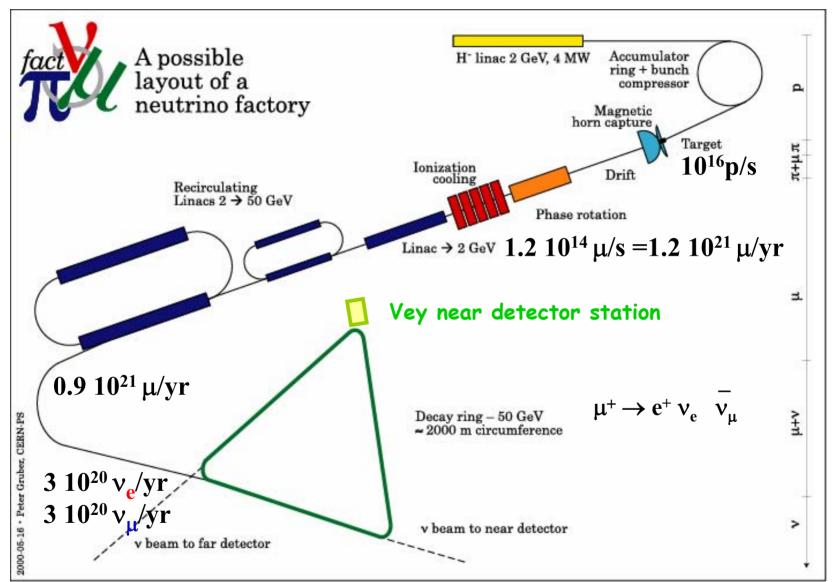
5. Geer: We are working towards a "World Design Study" with an emphasis on cost reduction.

Other physics opportunities at a V-factory complex

Related to high intensity

Could begin as soon as SPL/accumulator is build:

- -High intensity low energy muon experiments
 - -- rare muon decays and muon conversion (lepton Flavor violation)
 - -- G_F , g-2, edm, muonic atoms, e⁺ μ^- <-> e⁻ μ^+
- --> design of target stations and beamlines needed.
- 2d generation ISOLDE (Radioactive nuclei)
 - -- extend understanding of nuclei outside valley of stability
 - -- muonic atoms with rare nuclei(?)


if a sufficient fraction of the protons can be accelerated to E>15 GeV:

- -High intensity hadron experiments
 - -- rare K decays (e.g.K-> $\pi^0 \vee \nu$)

In parallel to long baseline neutrino experiments:

- -short baseline neutrino experiments (standard fluxes X104)
 - -- DIS on various materials and targets, charm production
 - -- NC/CC -> m_w (10-20 MeV) $v_u e \rightarrow v_u e \& v_e e \rightarrow v_e e -> sin^2 \theta_w^{eff}$ (2.10-4)
- --> design of beamline + detectors needed

-- Neutrino Factory -- Short baseline Physics

At the end of the straight sections, the fluxes are gigantic, in a very small area:

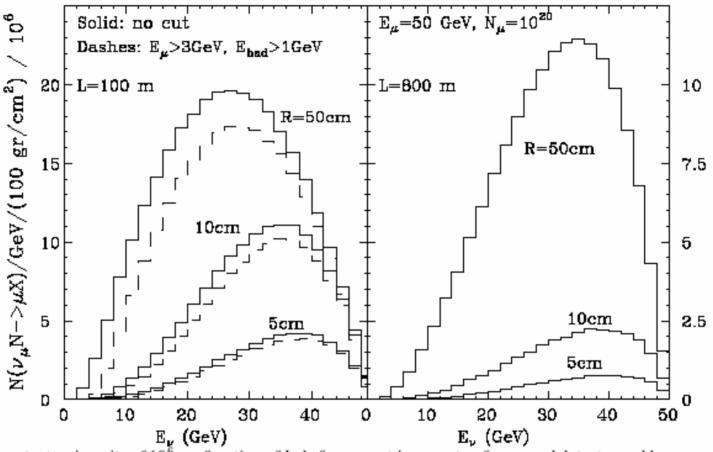
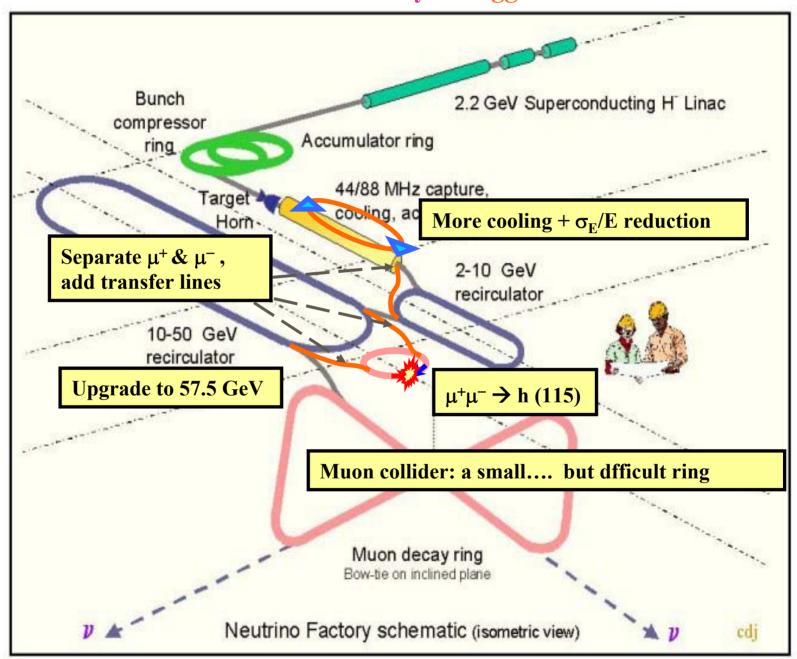



Fig. 2: CC event rates, in units of 10^6 , as function of Lab-frame neutrino spectra, for several detector and beam configurations. The dashed lines on the left include cuts on the fi nal-state muon ($E_{\mu} > 3 \text{ GeV}$) and on the fi nal-state hadronic energy ($E_{had} > 1 \text{ GeV}$). The solid lines have no energy-threshold cuts applied. The three set of curves correpsond to different detector radiuses (50, 10 and 5 cm, from top to bottom).

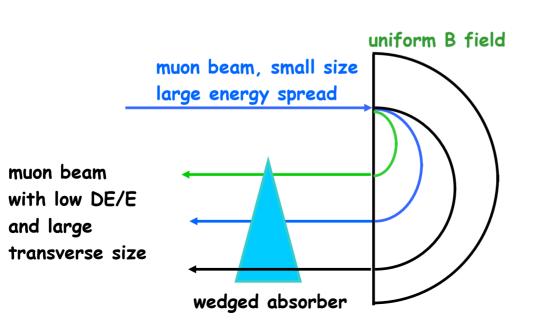
From neutrino factory to Higgs collider

challenges of µµ collider

 $N_{\text{events}} = \mathcal{L}.\sigma$ $\mathcal{L} = \frac{f N_1 N_2}{4\pi\sigma_x \sigma_y}$

Now needs not only muons but also a very small beam.

From neutrino factory to muon collider


- -- keep both signs of muons
- -- much more trasverse cooling
- -- much better reduction of energy spread
- → ring cooler? trade off between energy spread and transverse beam size:

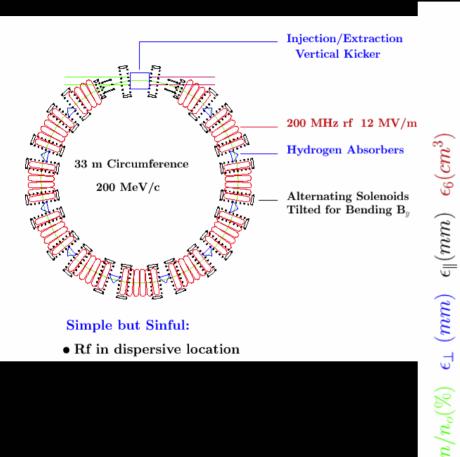
f = repetition rate (frequency of crossings N1 particles in each bunch of beam 1 N2 particles in each bunch of beam 2 $\pi \sigma_{x} \sigma_{y}$: area of beam ellipse.

With a 4 MW proton driver; repetition rate 15 Hz:

δ Ε/Ε (%)	0.12	0.01	0.003	
σ _{x,y} (μ m)	86	196	294	
L (cm ⁻² s ⁻¹)	1.2 1032	2.2 10 ³¹	1.0 1031	
∫ Ldt/year	1.2 fb ⁻¹	220 pb ⁻¹	100 pb ⁻¹	

With 20 MW — 2.5 fb⁻¹?

COOLING RINGS

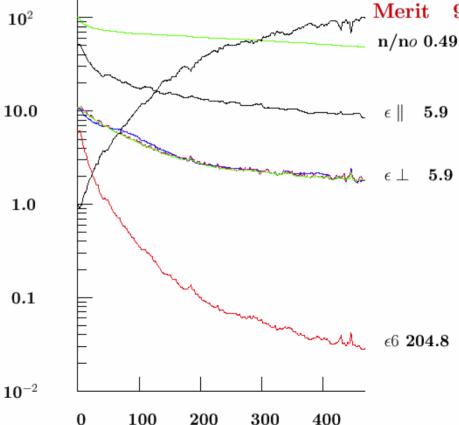

 10^{2}

1.0

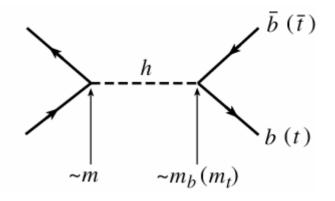
0.1

Two goals: 1) Reduce hardware expense on cooling channel

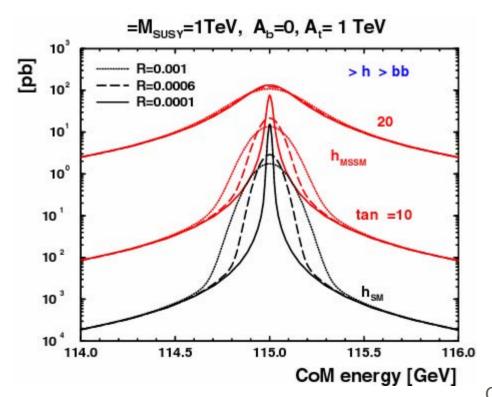
2) Combine with energy spread reduction (longitudinal and transverse cooling)


major problem: Kickers

(Same problem occurs in Japanese acceleration scheme with FFAG)

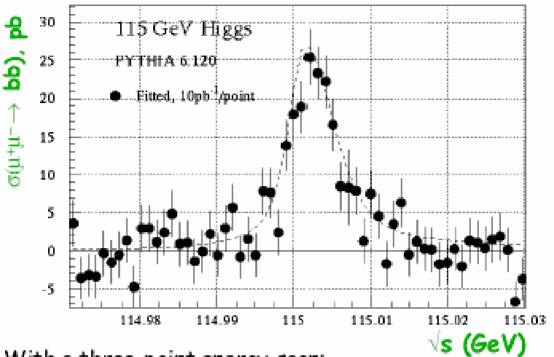


Input From Study 2 n/n = 485 / 1000


length (m)

Higgs factory $\mu^+ \mu^- \rightarrow h(115)$

- S-channel production of Higgs is unique feature of Muon collider
- no beamstrahlung or Synch. Rad., g-2 precession
- => outstanding energy calibration (OK) and resolution R= Δ E/E (needs ideas and R&D, however!)



$$\Delta m_h$$
=0.1 MeV
 $\Delta \Gamma_h$ =0.3 MeV
 $\Delta \sigma_{h\rightarrow bh}/\sigma_h$ = 1%

very stringent constraints on Higgs couplings (μ,τ,b)

With an irrealistic 10 pb-1 / MeV scan:

With a three-point energy scan:

Observa	ble Wi	th 100 pb	With 2.5 fb ⁻¹
Mass	± (0.1 MeV/c	$\pm 0.05 \text{ MeV/c}^2$
Width	±	0,5 MeV	± 0.1 MeV
σ _{peak}		± 1 pb	± 0.2 pb

Statistics limited!

Still to be tried:

A scan in $\delta E/E$

Higgs Factory #2: $\mu^+ \mu^- \rightarrow H$, A

SUSY and 2DHM predict two neutral heavy Higgs with masses close to each other and to the charged Higgs, with different CP number, and decay modes.

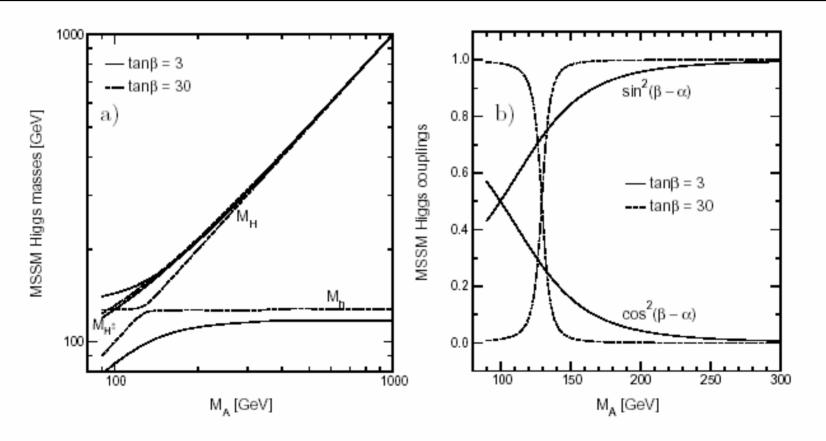
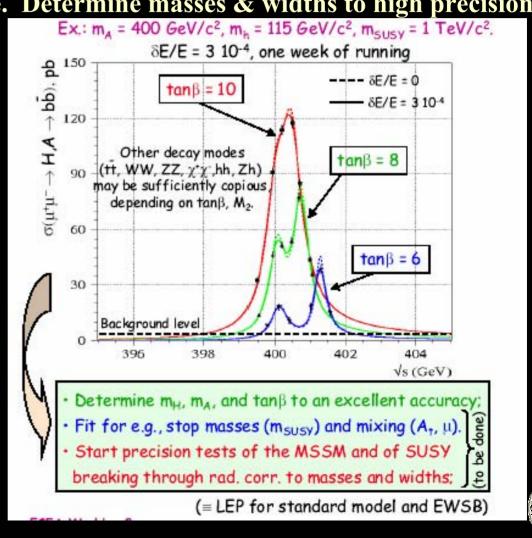


Figure 2.1.6: The masses of the Higgs bosons in the MSSM (a) and their squared couplings to the gauge bosons (b) for two representative values of $\tan \beta = 3$ and 30 [29].


Higgs Factory #2: $\mu^+ \mu^- \rightarrow H$, A

SUSY and 2DHM predict two neutral heavy Higgs with masses close to each other and to the charged Higgs, with different CP number, and decay modes.

Cross-sections are large. Determine masses & widths to high precision.

Telling H from A: bb and tt cross-sections (also: hh, WW, ZZ....)

investigate CP violating H/A interference.

Summary

- The (long) road towards leptonic CP violation has begun.
- Reactor and off axis experiments are being proposed/funded/approved to establish the value of $\boldsymbol{\theta}_{13}$
- (Double CHOOZ, T2K, NOVA ...) will come to fruition in 5-15 years
- to measure CP violation and matter effects, as well as testing unitarity and possible non-standard scenarios will require PRECISION! --> neutrinos from stored beams
- These pose considerable challenges to accelerator and detector builders!
- Enthusiastic R&D is ongoing, and a lot has already been accomplished (despite all the difficulties related to funding) -- much more is needed!
- Many of these facilities offer other a large range of physics interests ranging from nuclear physics to rare muon decay and neutrinos -- AND... LHC upgrade...
- The long term goal, LEPTONIC CP VIOLATION, makes the effort highly worthwhile
- And... this is the first step towards much colliders!